2025年名师测控九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名师测控九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名师测控九年级数学上册人教版》

25. (12分)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,$ C A = C B $,$ \angle C = 90 ^ { \circ } $,过点B作射线$ B D \perp A B $,垂足为B.
【动手操作】
(1)如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转$ 90 ^ { \circ } $与BD交于点E,根据题意在图中画出图形,图中$ \angle P B E $的度数为
$135^{\circ}$

【问题探究】
(2)根据(1)所画图形,探究线段PA与PE的数量关系;
【拓展延伸】
(3)如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转$ 90 ^ { \circ } $与BD交于点E,探究线段BA,BP,BE之间的数量关系.

(2) $PA = PE$。理由如下:
$\because CA = CB$,$\angle C = 90^{\circ}$,
$\therefore \angle ABC = \angle BAC = 45^{\circ}$。
过点$P$作$PM// AB$交$AC$于点$M$,
$\therefore \angle MPC = \angle ABC = 45^{\circ}$,$\angle PMC = \angle BAC = 45^{\circ}$,
$\therefore CP = CM$,$\angle AMP = 180^{\circ} - 45^{\circ} = 135^{\circ} = \angle PBE$,
$\therefore CA - CM = CB - CP$,即$AM = PB$。
$\because$射线$PA$绕点$P$逆时针旋转$90^{\circ}$得射线$PE$,
$\therefore \angle APE = 90^{\circ}$,
$\therefore \angle EPB = 90^{\circ} - \angle APC = \angle PAM$,
$\therefore \triangle APM \cong \triangle PEB(ASA)$,
$\therefore PA = PE$。
(3) 当点$P$在线段$BC$上时,$BA = \sqrt{2}BP + BE$;
当点$P$在线段$CB$的延长线上时,过点$P$作$PN\perp BC$交$BE$于点$N$,
$\because \angle ABD = 90^{\circ}$,$\angle ABC = 45^{\circ}$,
$\therefore \angle PBN = 45^{\circ}$,$\triangle BPN$是等腰直角三角形,
$\therefore BP = NP$,$\angle PNB = 45^{\circ}$,$\angle ENP = 135^{\circ} = \angle ABP$,$BN = \sqrt{2}BP$。
$\because \angle APE = 90^{\circ}$,
$\therefore \angle EPN = 90^{\circ} - \angle APN = \angle APB$,
$\therefore \triangle EPN \cong \triangle APB(ASA)$,
$\therefore EN = BA$,
$\because BE = EN + BN$,
$\therefore BE = BA + \sqrt{2}BP$。
综上所述,当点$P$在线段$BC$上时,$BA = \sqrt{2}BP + BE$;当点$P$在$CB$延长线上时,$BE = BA + \sqrt{2}BP$。
答案:
(1) 画图如图②;$135^{\circ}$
(2) $PA = PE$。理由如下:
$\because CA = CB$,$\angle C = 90^{\circ}$,
$\therefore \angle ABC = \angle BAC = 45^{\circ}$。
过点$P$作$PM// AB$交$AC$于点$M$,
$\therefore \angle MPC = \angle ABC = 45^{\circ}$,$\angle PMC = \angle BAC = 45^{\circ}$,
$\therefore CP = CM$,$\angle AMP = 180^{\circ} - 45^{\circ} = 135^{\circ} = \angle PBE$,
$\therefore CA - CM = CB - CP$,即$AM = PB$。
$\because$射线$PA$绕点$P$逆时针旋转$90^{\circ}$得射线$PE$,
$\therefore \angle APE = 90^{\circ}$,
$\therefore \angle EPB = 90^{\circ} - \angle APC = \angle PAM$,
$\therefore \triangle APM \cong \triangle PEB(ASA)$,
$\therefore PA = PE$。
(3) 当点$P$在线段$BC$上时,$BA = \sqrt{2}BP + BE$;
当点$P$在线段$CB$的延长线上时,过点$P$作$PN\perp BC$交$BE$于点$N$,
$\because \angle ABD = 90^{\circ}$,$\angle ABC = 45^{\circ}$,
$\therefore \angle PBN = 45^{\circ}$,$\triangle BPN$是等腰直角三角形,
$\therefore BP = NP$,$\angle PNB = 45^{\circ}$,$\angle ENP = 135^{\circ} = \angle ABP$,$BN = \sqrt{2}BP$。
$\because \angle APE = 90^{\circ}$,
$\therefore \angle EPN = 90^{\circ} - \angle APN = \angle APB$,
$\therefore \triangle EPN \cong \triangle APB(ASA)$,
$\therefore EN = BA$,
$\because BE = EN + BN$,
$\therefore BE = BA + \sqrt{2}BP$。
综上所述,当点$P$在线段$BC$上时,$BA = \sqrt{2}BP + BE$;当点$P$在$CB$延长线上时,$BE = BA + \sqrt{2}BP$。

查看更多完整答案,请扫码查看

关闭