24. (6分)某校组织初二年级380名学生到广东南路革命化州纪念馆研学活动,已知用3辆小客车和1辆大客车每次可运送学生130人,用1辆小客车和2辆大客车每次可运送学生110人.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若计划租小客车$m$辆,大客车$n$辆,一次送完,且恰好每辆车都坐满.
①请你设计出所有的租车方案;
②若小客车每辆租金200元,大客车每辆租金300元. 请选出最省钱的租车方案、并求出最少租金.
解:(1)设每辆小客车能坐$x$名学生,每辆大客车能坐$y$名学生,
依题意,得$\begin{cases}3x + y = 130 \\ x + 2y = 110\end{cases}$,解得$\begin{cases}x = 30 \\ y = 40\end{cases}$.
故每辆小客车能坐30名学生,每辆大客车能坐40名学生.
(2)最省钱的租车方案是租小客车10辆,大客车2辆,最少租金为2600元.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若计划租小客车$m$辆,大客车$n$辆,一次送完,且恰好每辆车都坐满.
①请你设计出所有的租车方案;
②若小客车每辆租金200元,大客车每辆租金300元. 请选出最省钱的租车方案、并求出最少租金.
解:(1)设每辆小客车能坐$x$名学生,每辆大客车能坐$y$名学生,
依题意,得$\begin{cases}3x + y = 130 \\ x + 2y = 110\end{cases}$,解得$\begin{cases}x = 30 \\ y = 40\end{cases}$.
故每辆小客车能坐30名学生,每辆大客车能坐40名学生.
(2)最省钱的租车方案是租小客车10辆,大客车2辆,最少租金为2600元.
答案:
(1)设每辆小客车能坐$x$名学生,每辆大客车能坐$y$名学生,
依题意,得$\begin{cases}3x + y = 130,\\x + 2y = 110,\end{cases}$解得$\begin{cases}x = 30,\\y = 40.\end{cases}$
故每辆小客车能坐30名学生,每辆大客车能坐40名学生.
(2)①依题意得$30m + 40n = 380$,$\therefore n=\frac{38 - 3m}{4}$.
又$m,n$均为整数,
$\therefore\begin{cases}m = 2,\\n = 8\end{cases}$或$\begin{cases}m = 6,\\n = 5\end{cases}$或$\begin{cases}m = 10,\\n = 2.\end{cases}$
$\therefore$共有3种租车方案,
方案1:租小客车2辆,大客车8辆;
方案2:租小客车6辆,大客车5辆;
方案3:租小客车10辆,大客车2辆.
②方案1所需租金为$200\times2 + 300\times8 = 2800$(元);
方案2所需租金为$200\times6 + 300\times5 = 2700$(元);
方案3所需租金为$200\times10 + 300\times2 = 2600$(元).
$\because2800>2700>2600$,
$\therefore$最省钱的租车方案是租小客车10辆,大客车2辆,最少租金为2600元.
依题意,得$\begin{cases}3x + y = 130,\\x + 2y = 110,\end{cases}$解得$\begin{cases}x = 30,\\y = 40.\end{cases}$
故每辆小客车能坐30名学生,每辆大客车能坐40名学生.
(2)①依题意得$30m + 40n = 380$,$\therefore n=\frac{38 - 3m}{4}$.
又$m,n$均为整数,
$\therefore\begin{cases}m = 2,\\n = 8\end{cases}$或$\begin{cases}m = 6,\\n = 5\end{cases}$或$\begin{cases}m = 10,\\n = 2.\end{cases}$
$\therefore$共有3种租车方案,
方案1:租小客车2辆,大客车8辆;
方案2:租小客车6辆,大客车5辆;
方案3:租小客车10辆,大客车2辆.
②方案1所需租金为$200\times2 + 300\times8 = 2800$(元);
方案2所需租金为$200\times6 + 300\times5 = 2700$(元);
方案3所需租金为$200\times10 + 300\times2 = 2600$(元).
$\because2800>2700>2600$,
$\therefore$最省钱的租车方案是租小客车10辆,大客车2辆,最少租金为2600元.
25. (6分)我们知道方程$2x + 3y = 12$有无数个解,但在实际问题中往往只需求出其正整数解.
例如:由$2x + 3y = 12$,得$y = \frac{12 - 2x}{3} = 4 - \frac{2}{3}x(x,y$为正整数$)$. 要使$y = 4 - \frac{2}{3}x$为正整数,则$\frac{2}{3}x$为整数,可知:$x$为3的倍数,从而$x = 3$,代入$y = 4 - \frac{2}{3}x = 2$,所以$2x + 3y = 12$的正整数解为$\begin{cases}x = 3 \\ y = 2\end{cases}$.
(1)请根据材料求出方程$3x + 2y = 8$的正整数解.
(2)把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费的情况下,共有几种截法?
解:(1)由$3x + 2y = 8$,得$y = \frac{8 - 3x}{2} = 4 - \frac{3}{2}x(x,y$为正整数$)$,要使$y = 4 - \frac{3}{2}x$为正整数,则$\frac{3}{2}x$为整数,可知$x$为2的倍数,从而$x = 2$,代入$y = 4 - \frac{3}{2}x = 1$,
$\therefore$方程$3x + 2y = 8$的正整数解为$\begin{cases}x = 2 \\ y = 1\end{cases}$.
(2)设截成2米长的钢管$x$段,3米长的钢管$y$段,
依题意,得$2x + 3y = 20$,$\therefore x = 10 - \frac{3}{2}y$.
又$x$,$y$均为正整数,$\therefore\begin{cases}x = 7 \\ y = 2\end{cases}$,$\begin{cases}x = 4 \\ y = 4\end{cases}$,$\begin{cases}x = 1 \\ y = 6\end{cases}$,$\therefore$共有3种截法.
例如:由$2x + 3y = 12$,得$y = \frac{12 - 2x}{3} = 4 - \frac{2}{3}x(x,y$为正整数$)$. 要使$y = 4 - \frac{2}{3}x$为正整数,则$\frac{2}{3}x$为整数,可知:$x$为3的倍数,从而$x = 3$,代入$y = 4 - \frac{2}{3}x = 2$,所以$2x + 3y = 12$的正整数解为$\begin{cases}x = 3 \\ y = 2\end{cases}$.
(1)请根据材料求出方程$3x + 2y = 8$的正整数解.
(2)把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费的情况下,共有几种截法?
解:(1)由$3x + 2y = 8$,得$y = \frac{8 - 3x}{2} = 4 - \frac{3}{2}x(x,y$为正整数$)$,要使$y = 4 - \frac{3}{2}x$为正整数,则$\frac{3}{2}x$为整数,可知$x$为2的倍数,从而$x = 2$,代入$y = 4 - \frac{3}{2}x = 1$,
$\therefore$方程$3x + 2y = 8$的正整数解为$\begin{cases}x = 2 \\ y = 1\end{cases}$.
(2)设截成2米长的钢管$x$段,3米长的钢管$y$段,
依题意,得$2x + 3y = 20$,$\therefore x = 10 - \frac{3}{2}y$.
又$x$,$y$均为正整数,$\therefore\begin{cases}x = 7 \\ y = 2\end{cases}$,$\begin{cases}x = 4 \\ y = 4\end{cases}$,$\begin{cases}x = 1 \\ y = 6\end{cases}$,$\therefore$共有3种截法.
答案:
(1)由$3x + 2y = 8$,得$y=\frac{8 - 3x}{2}=4-\frac{3}{2}x(x,y$为正整数),要使$y = 4-\frac{3}{2}x$为正整数,则$\frac{3}{2}x$为整数,可知$x$为2的倍数,从而$x = 2$,代入$y = 4-\frac{3}{2}x = 1$,
$\therefore$方程$3x + 2y = 8$的正整数解为$\begin{cases}x = 2,\\y = 1.\end{cases}$
(2)设截成2米长的钢管$x$段,3米长的钢管$y$段,
依题意,得$2x + 3y = 20$,$\therefore x = 10-\frac{3}{2}y$.
又$x,y$均为正整数,
$\therefore\begin{cases}x = 7,\\y = 2,\end{cases}\begin{cases}x = 4,\\y = 4,\end{cases}\begin{cases}x = 1,\\y = 6,\end{cases}$
$\therefore$共有3种截法.
$\therefore$方程$3x + 2y = 8$的正整数解为$\begin{cases}x = 2,\\y = 1.\end{cases}$
(2)设截成2米长的钢管$x$段,3米长的钢管$y$段,
依题意,得$2x + 3y = 20$,$\therefore x = 10-\frac{3}{2}y$.
又$x,y$均为正整数,
$\therefore\begin{cases}x = 7,\\y = 2,\end{cases}\begin{cases}x = 4,\\y = 4,\end{cases}\begin{cases}x = 1,\\y = 6,\end{cases}$
$\therefore$共有3种截法.
查看更多完整答案,请扫码查看