21. (4分)小鑫、小童两人同时解方程组$\begin{cases}\frac{1}{2}ax - by = 1,① \\ ax - y = 17,②\end{cases}$时,小鑫看错了方程②中的$a$,解得$\begin{cases}x = 4 \\ y = 1\end{cases}$,小童看错了①中的$b$,解得$\begin{cases}x = 5 \\ y = -7\end{cases}$.
(1)求正确的$a$,$b$的值;
(2)求原方程组的正确解.
解:(1)$\begin{cases}a = 2 \\ b = 3\end{cases}$ (2)$\begin{cases}x = 10 \\ y = 3\end{cases}$
(1)求正确的$a$,$b$的值;
(2)求原方程组的正确解.
解:(1)$\begin{cases}a = 2 \\ b = 3\end{cases}$ (2)$\begin{cases}x = 10 \\ y = 3\end{cases}$
答案:
(1)$\begin{cases}a = 2 \\ b = 3\end{cases}$ (2)$\begin{cases}x = 10 \\ y = 3\end{cases}$
22. (4分)下面是小华同学解方程组$\begin{cases}3x + 2y = 1,① \\ 4x - y = -6②\end{cases}$的过程,请你观察计算过程,回答下面问题.
解:②×2,得$8x - 2y = -6③\cdots(1)$
① + ③,得$11x = -5\cdots(2)$
$\therefore x = -\frac{5}{11}\cdots(3)$
($a$)第(1)步(填序号)出错;
($b$)请你写出正确的解题过程.
解:$\begin{cases}3x + 2y = 1① \\ 4x - y = -6②\end{cases}$,②×2,得$8x - 2y = -12③$,
① + ③,得$11x = -11$,$\therefore x = -1$,
把$x = -1$代入②,得$y = 2$,$\therefore$方程组的解是$\begin{cases}x = -1 \\ y = 2\end{cases}$.
解:②×2,得$8x - 2y = -6③\cdots(1)$
① + ③,得$11x = -5\cdots(2)$
$\therefore x = -\frac{5}{11}\cdots(3)$
($a$)第(1)步(填序号)出错;
($b$)请你写出正确的解题过程.
解:$\begin{cases}3x + 2y = 1① \\ 4x - y = -6②\end{cases}$,②×2,得$8x - 2y = -12③$,
① + ③,得$11x = -11$,$\therefore x = -1$,
把$x = -1$代入②,得$y = 2$,$\therefore$方程组的解是$\begin{cases}x = -1 \\ y = 2\end{cases}$.
答案:
($a$)
(1)
($b$)$\begin{cases}3x + 2y = 1①,\\4x - y = -6②,\end{cases}$
②×2,得$8x - 2y = -12③$,
①+③,得$11x = -11$,$\therefore x = -1$,
把$x = -1$代入②,得$y = 2$,
$\therefore$方程组的解是$\begin{cases}x = -1,\\y = 2.\end{cases}$
(1)
($b$)$\begin{cases}3x + 2y = 1①,\\4x - y = -6②,\end{cases}$
②×2,得$8x - 2y = -12③$,
①+③,得$11x = -11$,$\therefore x = -1$,
把$x = -1$代入②,得$y = 2$,
$\therefore$方程组的解是$\begin{cases}x = -1,\\y = 2.\end{cases}$
23. (6分)我们规定,关于$x$,$y$的二元一次方程$ax + by = c$,若满足$a + b = c$,则称这个方程为“幸福”方程. 例如:方程$2x + 3y = 5$,其中$a = 2$,$b = 3$,$c = 5$,满足$a + b = c$,则方程$2x + 3y = 5$是“幸福”方程,把两个“幸福”方程合在一起叫“幸福”方程组,根据上述规定,回答下列问题:
(1)判断方程$3x + 5y = 8$ “幸福”方程(填“是”或“不是”);
(2)若关于$x$,$y$的二元一次方程$kx + (k - 1)y = 9$是“幸福”方程,求$k$的值;
(3)若$\begin{cases}x = p \\ y = q\end{cases}$是关于$x$,$y$的“幸福”方程组$\begin{cases}mx + (m + 1)y = n - 1 \\ mx + 2my = n\end{cases}$的解,求$4p + 7q$的值.
解:(2)$\because$二元一次方程$kx + (k - 1)y = 9$是“幸福”方程,
$\therefore k + k - 1 = 9$,解得$k = 5$.
(3)$4p + 7q = 11$.
(1)判断方程$3x + 5y = 8$ “幸福”方程(填“是”或“不是”);
(2)若关于$x$,$y$的二元一次方程$kx + (k - 1)y = 9$是“幸福”方程,求$k$的值;
(3)若$\begin{cases}x = p \\ y = q\end{cases}$是关于$x$,$y$的“幸福”方程组$\begin{cases}mx + (m + 1)y = n - 1 \\ mx + 2my = n\end{cases}$的解,求$4p + 7q$的值.
解:(2)$\because$二元一次方程$kx + (k - 1)y = 9$是“幸福”方程,
$\therefore k + k - 1 = 9$,解得$k = 5$.
(3)$4p + 7q = 11$.
答案:
(1)是
(2)$\because$二元一次方程$kx+(k - 1)y = 9$是“幸福”方程,$\therefore k + k - 1 = 9$,解得$k = 5$.
(3)$\because\begin{cases}mx+(m + 1)y = n - 1,\\mx + 2my = n\end{cases}$是“幸福”方程组,
$\therefore\begin{cases}m + m + 1 = n - 1,\\m + 2m = n,\end{cases}$解得$\begin{cases}m = 2,\\n = 6,\end{cases}$$\therefore$原方程组为$\begin{cases}2x + 3y = 5,\\2x + 4y = 6.\end{cases}$$\because\begin{cases}x = p,\\y = q\end{cases}$是关于$x,y$的“幸福”方程组的解,$\therefore\begin{cases}2p + 3q = 5,①\\2p + 4q = 6,②\end{cases}$由①+②,得$4p + 7q = 11$.
(2)$\because$二元一次方程$kx+(k - 1)y = 9$是“幸福”方程,$\therefore k + k - 1 = 9$,解得$k = 5$.
(3)$\because\begin{cases}mx+(m + 1)y = n - 1,\\mx + 2my = n\end{cases}$是“幸福”方程组,
$\therefore\begin{cases}m + m + 1 = n - 1,\\m + 2m = n,\end{cases}$解得$\begin{cases}m = 2,\\n = 6,\end{cases}$$\therefore$原方程组为$\begin{cases}2x + 3y = 5,\\2x + 4y = 6.\end{cases}$$\because\begin{cases}x = p,\\y = q\end{cases}$是关于$x,y$的“幸福”方程组的解,$\therefore\begin{cases}2p + 3q = 5,①\\2p + 4q = 6,②\end{cases}$由①+②,得$4p + 7q = 11$.
查看更多完整答案,请扫码查看