1. ◆2025·大连沙河口区期末◆ 如图,有线段$AB$,分别以点$A$,$B$为圆心,大于$\frac{1}{2}AB$的长为半径作弧,两弧交于$M$,$N$两点,作直线$MN$,点$C$在直线$MN$上,连接$CA$,$CB$,延长$AC$至点$D$.请根据要求完成以下作图与证明.
(1)尺规作图:作$\angle BCD$的平分线$CE$.(保留作图痕迹,不写作法)
(2)求证:$CE// AB$.

(1)尺规作图:作$\angle BCD$的平分线$CE$.(保留作图痕迹,不写作法)
(2)求证:$CE// AB$.
答案:
1.
(1)如图,射线CE即为所求.
(2)证明:由题意得,直线MN为线段AB的垂直平分线.
∴CA = CB.
∴∠A = ∠B.
∵∠BCD = ∠A + ∠B,
∴∠BCD = 2∠B,即∠B = $\frac{1}{2}$∠BCD.
∵CE平分∠BCD,
∴∠BCE = $\frac{1}{2}$∠BCD.
∴∠B = ∠BCE.
∴CE//AB.
1.
(1)如图,射线CE即为所求.
(2)证明:由题意得,直线MN为线段AB的垂直平分线.
∴CA = CB.
∴∠A = ∠B.
∵∠BCD = ∠A + ∠B,
∴∠BCD = 2∠B,即∠B = $\frac{1}{2}$∠BCD.
∵CE平分∠BCD,
∴∠BCE = $\frac{1}{2}$∠BCD.
∴∠B = ∠BCE.
∴CE//AB.
2. 如图,在$\triangle ABC$中,$AC=BC$.
(1)尺规作图:作$BC$的垂直平分线,交$BC$于点$D$,交$AC$于点$E$,连接$BE$.(保留作图痕迹,不写作法)
(2)若$BE=BA$,求$\angle C$的度数.

(1)尺规作图:作$BC$的垂直平分线,交$BC$于点$D$,交$AC$于点$E$,连接$BE$.(保留作图痕迹,不写作法)
(2)若$BE=BA$,求$\angle C$的度数.
答案:
2.
(1)如图,DE即为所求.
(2)解:
∵DE垂直平分BC,
∴EB = EC.
∴∠EBC = ∠C.
∴∠BEA = ∠EBC + ∠C = 2∠C.
∵BE = BA,
∴∠A = ∠BEA = 2∠C.
∵CA = CB,
∴∠CBA = ∠A = 2∠C.
∵∠A + ∠CBA + ∠C = 180°,
∴2∠C + 2∠C + ∠C = 180°.
∴∠C = 36°.
2.
(1)如图,DE即为所求.
(2)解:
∵DE垂直平分BC,
∴EB = EC.
∴∠EBC = ∠C.
∴∠BEA = ∠EBC + ∠C = 2∠C.
∵BE = BA,
∴∠A = ∠BEA = 2∠C.
∵CA = CB,
∴∠CBA = ∠A = 2∠C.
∵∠A + ∠CBA + ∠C = 180°,
∴2∠C + 2∠C + ∠C = 180°.
∴∠C = 36°.
查看更多完整答案,请扫码查看