2025年点石成金金牌夺冠八年级数学上册人教版辽宁专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年点石成金金牌夺冠八年级数学上册人教版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年点石成金金牌夺冠八年级数学上册人教版辽宁专版》

3. 如图,点$B$,$C$分别在射线$AM$,$AN$上,点$E$,$F$在$\angle MAN$内部的射线$AD$上,已知$AB = AC$,$\angle BED = \angle BAC = \angle CFD$.
(1)求证:$\triangle ABE \cong \triangle CAF$.
(2)试判断$BE$,$CF$,$EF$之间的数量关系,并说明理由.
答案: 3.
(1)证明:
∵∠BED = ∠BAE + ∠ABE,∠BAC = ∠BAE + ∠CAF,∠CFD = ∠ACF + ∠CAF,且∠BED = ∠BAC = ∠CFD,
∴∠ABE = ∠CAF,∠BAE = ∠ACF.
在△ABE和△CAF中,$\begin{cases} ∠ABE = ∠CAF, \\ AB = CA, \\ ∠BAE = ∠ACF \end{cases}$
∴△ABE≌△CAF(ASA).
(2)BE = CF + EF.
理由:由
(1)得,△ABE≌△CAF.
∴AE = CF,BE = AF.
∴BE = AF = AE + EF = CF + EF.
4. 已知$\triangle ABC$是等边三角形,点$D$为射线$AC$上一点,连接$BD$,$\angle DBE = 120^{\circ}$,$BD = BE$.
(1)如图1,过点$E$作$EF // AC$交边$AB$于点$F$,求证:$FB = CD$.
(2)如图2,当点$D$在边$AC$上时,连接$CE$交边$AB$于点$G$. 若$AB = 4$,$BG = 1$,求证:$BD \perp AC$.
答案:
4.
(1)证明:
∵△ABC是等边三角形,
∴∠ABC = ∠ACB = ∠A = 60°.
∴∠BCD = 180° - ∠ACB = 120°.
∵EF//AC,
∴∠EFA = ∠A = 60°.
∴∠BFE = 180° - ∠EFA = 120°.
∴∠BFE = ∠BCD.
∵∠DBE = 120°,
∴∠EBF + ∠DBC = ∠DBE - ∠ABC = 60°.
∵∠ACB = ∠DBC + ∠D = 60°,
∴∠EBF = ∠D.
在△EFB和△BCD中,$\begin{cases} ∠EFB = ∠BCD, \\ ∠EBF = ∠D, \\ EB = BD \end{cases}$
∴△EFB≌△BCD(AAS).
∴FB = CD.
(2)证明:如图,过点E作EF//AC交AB的延长线于点F,
∴∠F = ∠A.
∵△ABC是等边三角形,
∴∠ABC = ∠ACB = ∠A = ∠F = 60°,AB = BC = AC.
∴∠FBC = 180° - ∠ABC = 120°.
∵∠DBE = 120°,
∴∠CBD + ∠EBF = 360° - ∠FBC - ∠DBE = 120°.
∵∠BDC + ∠CBD = 180° - ∠ACB = 120°,
∴∠EBF = ∠BDC.
在△EFB和△BCD中,$\begin{cases} ∠F = ∠BCD, \\ ∠EBF = ∠BDC, \\ EB = BD \end{cases}$
∴△EFB≌△BCD(AAS).
∴FB = CD,EF = BC = AC.
在△EGF和△CGA中,$\begin{cases} ∠EGF = ∠CGA, \\ ∠F = ∠A, \\ EF = CA \end{cases}$
∴∠EGF≌△CGA(AAS).
∵AB = 4,BG = 1,
∴GF = GA = AB - BG = 3.
∴CD = FB = GF - BG = 3 - 1 = 2.
∴AD = AC - CD = AB - CD = 2.
∴CD = AD.
∵BC = BA,
∴BD⊥AC.
       第4题图

查看更多完整答案,请扫码查看

关闭