1. $- 2m^{2} + 32n^{2}$.
2. $(x - 2)(x - 4) + 1$.
3. $- 3ax^{2} - 6axy - 3ay^{2}$.
4. $mx^{2} - 6mx + 9m$.
5. $4a^{3} - 4a^{2}b + ab^{2}$.
6. $- 2x^{2} + 8x - 8$.
7. $9a^{2}(m + n) - 4b^{2}(m + n)$.
8. $(3m - 1)^{2} - (2m - 3)^{2}$.
9. $a^{2}(a - b) + 2ab(b - a) + b^{2}(a - b)$.
10. $(1 - y^{2})^{2} - 6(y^{2} - 1) + 9$.
11. 先因式分解,再求值:$9(a - b)^{2} - 4(a + b)^{2}$,其中$a = \frac{1}{5}$,$b = - 1$.
2. $(x - 2)(x - 4) + 1$.
3. $- 3ax^{2} - 6axy - 3ay^{2}$.
4. $mx^{2} - 6mx + 9m$.
5. $4a^{3} - 4a^{2}b + ab^{2}$.
6. $- 2x^{2} + 8x - 8$.
7. $9a^{2}(m + n) - 4b^{2}(m + n)$.
8. $(3m - 1)^{2} - (2m - 3)^{2}$.
9. $a^{2}(a - b) + 2ab(b - a) + b^{2}(a - b)$.
10. $(1 - y^{2})^{2} - 6(y^{2} - 1) + 9$.
11. 先因式分解,再求值:$9(a - b)^{2} - 4(a + b)^{2}$,其中$a = \frac{1}{5}$,$b = - 1$.
答案:
$1.-2(m + 4n)(m - 4n). 2.(x - 3)^{2}.$
$3.-3a(x + y)^{2}. 4.m(x - 3)^{2}.$
$5.a(2a - b)^{2}. 6.-2(x - 2)^{2}.$
7.(m + n)(3a + 2b)(3a - 2b).
$8.(5m - 4)(m + 2). 9.(a - b)^{3}.$
$10.(y + 2)^{2}(y - 2)^{2}.$
11.解:原式=(5a - b)(a - 5b).
当$a=\frac{1}{5},b = -1$时,原式$=\frac{52}{5}.$
$3.-3a(x + y)^{2}. 4.m(x - 3)^{2}.$
$5.a(2a - b)^{2}. 6.-2(x - 2)^{2}.$
7.(m + n)(3a + 2b)(3a - 2b).
$8.(5m - 4)(m + 2). 9.(a - b)^{3}.$
$10.(y + 2)^{2}(y - 2)^{2}.$
11.解:原式=(5a - b)(a - 5b).
当$a=\frac{1}{5},b = -1$时,原式$=\frac{52}{5}.$
查看更多完整答案,请扫码查看