1. 如图,$AB = AE$,$AC = AD$,$\angle BAD = \angle EAC$,$\angle C = 50^{\circ}$,求$\angle D$的度数.

答案:
1.解:
∵∠BAD = ∠EAC,
∴∠BAD + ∠DAC = ∠EAC + ∠DAC,
即∠BAC = ∠EAD.
在△ABC和△AED中,$\begin{cases} AB = AE, \\ ∠BAC = ∠EAD, \\ AC = AD \end{cases}$
∴△ABC≌△AED(SAS).
∴∠C = ∠D.
∵∠C = 50°,
∴∠D = 50°.
∵∠BAD = ∠EAC,
∴∠BAD + ∠DAC = ∠EAC + ∠DAC,
即∠BAC = ∠EAD.
在△ABC和△AED中,$\begin{cases} AB = AE, \\ ∠BAC = ∠EAD, \\ AC = AD \end{cases}$
∴△ABC≌△AED(SAS).
∴∠C = ∠D.
∵∠C = 50°,
∴∠D = 50°.
2. 如图,$AB = AD$,$\angle BAD = \angle CAE$,$\angle C = \angle E$.
(1)求证:$AC = AE$.
(2)若$\angle B = 70^{\circ}$,$\angle E = 30^{\circ}$,求$\angle BAC$的度数.

(1)求证:$AC = AE$.
(2)若$\angle B = 70^{\circ}$,$\angle E = 30^{\circ}$,求$\angle BAC$的度数.
答案:
2.
(1)证明:
∵∠BAD = ∠CAE,
∴∠BAD + ∠DAC = ∠CAE + ∠DAC,
即∠BAC = ∠DAE.
在△ABC和△ADE中,$\begin{cases} ∠C = ∠E, \\ ∠BAC = ∠DAE, \\ AB = AD \end{cases}$
∴△ABC≌△ADE(AAS).
∴AC = AE.
(2)解:由
(1)得,△ABC≌△ADE.
∴∠C = ∠E = 30°.
∵∠B = 70°,
∴∠BAC = 180° - ∠B - ∠C = 80°.
(1)证明:
∵∠BAD = ∠CAE,
∴∠BAD + ∠DAC = ∠CAE + ∠DAC,
即∠BAC = ∠DAE.
在△ABC和△ADE中,$\begin{cases} ∠C = ∠E, \\ ∠BAC = ∠DAE, \\ AB = AD \end{cases}$
∴△ABC≌△ADE(AAS).
∴AC = AE.
(2)解:由
(1)得,△ABC≌△ADE.
∴∠C = ∠E = 30°.
∵∠B = 70°,
∴∠BAC = 180° - ∠B - ∠C = 80°.
查看更多完整答案,请扫码查看