1. 如图,在$\triangle BDE$和$\triangle BAC$中,$DE = AC$,点$E$在边$AC$上,$DE$与$AB$交于点$F$,$\angle DBF = \angle CBE = \angle AED$. 求证:$\triangle BDE \cong \triangle BAC$.

答案:
1.证明:
∵∠DBF = ∠CBE,
∴∠DBF + ∠FBE = ∠CBE + ∠FBE,
即∠DBE = ∠ABC.
∵∠DBF = ∠AED, ∠DFB = ∠AFE,
∴180° - ∠DBF - ∠DFB = 180° - ∠AED - ∠AFE,
即∠D = ∠A.
在△BDE和△BAC中,$\begin{cases} ∠DBE = ∠ABC, \\ ∠D = ∠A, \\ DE = AC \end{cases}$
∴△BDE≌△BAC(AAS).
∵∠DBF = ∠CBE,
∴∠DBF + ∠FBE = ∠CBE + ∠FBE,
即∠DBE = ∠ABC.
∵∠DBF = ∠AED, ∠DFB = ∠AFE,
∴180° - ∠DBF - ∠DFB = 180° - ∠AED - ∠AFE,
即∠D = ∠A.
在△BDE和△BAC中,$\begin{cases} ∠DBE = ∠ABC, \\ ∠D = ∠A, \\ DE = AC \end{cases}$
∴△BDE≌△BAC(AAS).
2. 如图,在$\triangle ABC$中,点$D$是边$AC$上一点,$DE \perp AB$于点$E$,延长$ED$交$BC$的延长线于点$F$,$CD = CF$.
(1)求证:$\triangle ABC$是等腰三角形.
(2)当$\angle F =$

(1)求证:$\triangle ABC$是等腰三角形.
(2)当$\angle F =$
30°
时,$\triangle ABC$是等边三角形. 请填空并给出证明.
答案:
2.
(1)证明:
∵CD = CF,
∴∠CDF = ∠CFD.
∵∠CDF = ∠ADE,
∴∠CFD = ∠ADE.
∵DE⊥AB,
∴∠FEB = ∠DEA = 90°.
∴90° - ∠CFD = 90° - ∠ADE,即∠B = ∠A.
∴CB = CA.
∴△ABC是等腰三角形.
(2)30°
证明:
∵∠F = 30°,
∴∠B = 90° - ∠F = 60°.
∵CB = CA,
∴△ABC是等边三角形.
(1)证明:
∵CD = CF,
∴∠CDF = ∠CFD.
∵∠CDF = ∠ADE,
∴∠CFD = ∠ADE.
∵DE⊥AB,
∴∠FEB = ∠DEA = 90°.
∴90° - ∠CFD = 90° - ∠ADE,即∠B = ∠A.
∴CB = CA.
∴△ABC是等腰三角形.
(2)30°
证明:
∵∠F = 30°,
∴∠B = 90° - ∠F = 60°.
∵CB = CA,
∴△ABC是等边三角形.
查看更多完整答案,请扫码查看