2025年小题狂做高中数学选择性必修第二册苏教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学选择性必修第二册苏教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



12. (2024江苏泰州期末)已知$\sum\limits_{k = 1}^{n}k(1 + x)^{n + k}=\sum\limits_{k = 0}^{2n}a_{k}x^{k}$,$a_{n}=(n + 1)\mathrm{C}_{2n + 1}^{t}$,则$t =$
$n + 2$
.(用含有$n$的式子表示)
答案: 12.$n + 2\sum_{k = 1}^{n}k(1 + x)^{n + k} = \sum_{k = 0}^{2n}a_{k}x^{k}$,$a_{n} = (n + 1)C_{2n + 1}^{n}$,令$f(x) = (1 + x)^{n + 1} + 2(1 + x)^{n + 2} + ·s + n(1 + x)^{2n}$,则$f(x)$的展开式中含$x^{n}$项的系数为$C_{n + 1}^{n} + 2C_{n + 2}^{n} + 3C_{n + 3}^{n} + ·s + nC_{2n}^{n} = C_{n + 1}^{1} + 2C_{n + 2}^{2} + 3C_{n + 3}^{3} + ·s + nC_{2n}^{n}$.因为$kC_{n + k}^{k} = \frac{k(n + k)!}{k!n!} = \frac{(n + k)!}{(k - 1)!n!} = (n + 1)C_{n + 1}^{k - 1}$,所以$x^{n}$项的系数为$(n + 1)(C_{n + 1}^{n + 1} + C_{n + 2}^{n + 2} + C_{n + 3}^{n + 3} + ·s + C_{2n}^{n + n}) = (n + 1)(C_{n + 1}^{0} + C_{n + 2}^{1} + C_{n + 3}^{2} + ·s + C_{2n}^{n - 1}) = ·s = (n + 1)C_{2n + 1}^{n}$,所以$t = n + 2$。
13. (2024山东聊城期末)已知$(1 + 2x)^{2}+(1 + 2x)^{3}+·s +(1 + 2x)^{n}=9 + a_{1}x + a_{2}x^{2}+·s +a_{n}x^{n}$。求:
(1) $n$的值;
(2) $(a_{1}+a_{3}+a_{5}+·s)-(a_{2}+a_{4}+a_{6}+·s)$的值;
(3) $a_{2}$的值.(结果用数字表示)
答案: 13.解:
(1)在$(1 + 2x)^{2} + (1 + 2x)^{3} + ·s + (1 + 2x)^{n} = 9 + a_{1}x + a_{2}x^{2} + ·s + a_{n}x^{n}$中,令$x = 0$,得$n - 1 = 9$,所以$n = 10$。
(2)在$(1 + 2x)^{2} + (1 + 2x)^{3} + ·s + (1 + 2x)^{10} = 9 + a_{1}x + a_{2}x^{2} + ·s + a_{10}x^{10}$中,令$x = -1$,得$9 - a_{1} + a_{2} - ·s - a_{9} + a_{10} = 1 - 1 + 1 - 1 + ·s + 1 - 1 + 1 = 1$,所以$(a_{1} + a_{3} + a_{5} + ·s) - (a_{2} + a_{4} + a_{6} + ·s) = 8$。
(3)$(1 + 2x)^{n}$的展开式的通项$T_{r + 1} = C_{n}(2x)^{r} = 2^{r}C_{n}^{r}x^{r}$,因此$a_{2} = 2^{2}(C_{2}^{2} + C_{3}^{2} + C_{4}^{2} + ·s + C_{10}^{2}) = 4(C_{3} + C_{3} + C_{4}^{2} + ·s + C_{10}^{2}) = 4C_{11}^{3} = 660$。
14. (2024辽宁大连期末)设$(2x + 1)^{8}$展开式的第$n$项的系数为$a_{n}$。
(1) 求$a_{n}$的最大值;
(2) 若$[x]$表示$x$的整数部分,$S=\frac{\sum\limits_{i = 0}^{4}a_{2i + 1}}{2}$,求$S - [S]$的值。
答案: 14.解:
(1)由题可知,$(2x + 1)^{8}$展开式中第$(k + 1)$项为$T_{k + 1} = C_{8}^{k}(2x)^{8 - k} × 1^{k} = C_{8}^{k}2^{8 - k}x^{8 - k}$,则系数最大的项需满足$\begin{cases} C_{8}^{k}2^{8 - k} \geq C_{8}^{k - 1}2^{8 - (k - 1)} \\C_{8}^{k}2^{8 - k} \geq C_{8}^{k + 1}2^{8 - (k + 1)} \end{cases} k \in N^{*}$,解得$2 \leq k \leq 3$,所以$k = 2$或$k = 3$,所以系数最大项为第3项和第4项,即$n = 3$或$n = 4$,所以$a_{n}$的最大值为$a_{3} = a_{4} = C_{8}^{2^{8 - 2}} = 1792$。
(2)因为$\sum_{i = 0}^{4}a_{2i + 1} = a_{1} + a_{3} + a_{5} + a_{7} + a_{9}$,$\sum_{i = 0}^{3}a_{2i + 2} = a_{2} + a_{4} + a_{6} + a_{8}$,且$(2x + 1)^{8}$展开式中第$(k + 1)$项为$T_{k + 1} = C_{8}^{8 - k} = C_{8}^{2^{8 - k}}x^{8 - k}$,所以$(2x + 1)^{8} = a_{1}x^{8} + a_{2}x^{8} + a_{3}x^{6} + a_{4}x^{5} + a_{5}x^{4} + a_{6}x^{3} + a_{7}x^{2} + a_{8}x + a_{9}$。令$x = 1$,得$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{8} + a_{9} = 3^{8}$,即$\sum_{i = 0}^{4}a_{2i + 1} = 3^{8}$;令$x = -1$,得$a_{1} - a_{2} + a_{3} - a_{4} + a_{5} - a_{6} + a_{7} - a_{8} + a_{9} = 1$,即$\sum_{i = 0}^{3}a_{2i + 2} - \sum_{i = 0}^{3}a_{2i + 2} = 1$。所以$\sum_{i = 0}^{4}a_{2i + 1} = \frac{3^{8} + 1}{2}$,所以$S = \frac{\sum_{i = 0}^{4}a_{2i + 1}}{2} = \frac{3^{8} + 1}{4}$而$3^{8} + 1 = (4 - 1)^{8} + 1 = C_{8}^{0}4^{8}(-1)^{0} + C_{8}^{1}4^{7}(-1)^{1} + ·s + C_{8}^{8}4^{0}(-1)^{8} + 1 = 4(C_{8}^{7} - C_{8}^{6} + C_{8}^{5} - C_{8}^{4} + C_{8}^{3} - C_{8}^{2} + C_{8}^{1} - C_{8}^{0}) + 2$,所以$S = \frac{4(C_{8}^{7} - C_{8}^{6} + C_{8}^{5} - C_{8}^{4} + C_{8}^{3} - C_{8}^{2} + C_{8}^{1} - C_{8}^{0}) + 2}{4} = (C_{8}^{7} - C_{8}^{6} + C_{8}^{5} - C_{8}^{4} + C_{8}^{3} - C_{8}^{2} + C_{8}^{1} - C_{8}^{0}) + 0.5$。由题可知,$[S] = C_{8}^{7} - C_{8}^{6} + C_{8}^{5} - C_{8}^{4} + C_{8}^{3} - C_{8}^{4} + C_{8}^{4} - C_{8}^{7}$,所以$S - [S]$的值为$0.5$。
15. (2024江苏宿迁期中)在$(a^{2}+a + 1)^{n}=S_{n}^{0}a^{2n}+S_{n}^{1}a^{2n - 1}+S_{n}^{2}a^{2n - 2}+·s +S_{n}^{2n - 1}a + S_{n}^{2n}$的展开式中,把$S_{n}^{0},S_{n}^{1},S_{n}^{2},·s,S_{n}^{2n}$叫作三项式的$n$次系数列。
(1) 求$S_{3}^{1}+S_{3}^{3}+S_{3}^{5}$的值。
(2) 根据二项式定理,将等式$(1 + x)^{2n}=(1 + x)^{n}(1 + x)^{n}$的两边分别展开可得左右两边的系数对应相等,如$\mathrm{C}_{2n}^{n}=(\mathrm{C}_{n}^{0})^{2}+(\mathrm{C}_{n}^{1})^{2}+(\mathrm{C}_{n}^{2})+·s +(\mathrm{C}_{n}^{n})^{2}$。理解上述思想方法,利用方程$1 - x^{3}=(1 - x)(1 + x + x^{2})$,请化简:$S_{2025}^{0}\mathrm{C}_{2025}^{0}-S_{2025}^{1}\mathrm{C}_{2025}^{1}+S_{2025}^{2}\mathrm{C}_{2025}^{2}-·s +(-1)^{k}· S_{2025}^{k}\mathrm{C}_{2025}^{k}+·s +S_{2024}^{2024}-S_{2025}^{2025}\mathrm{C}_{2025}^{2025}$。
答案: 15.解:
(1)因为$(a^{2} + a + 1)^{3} = S_{3}^{0} · a^{6} + S_{3}^{1} · a^{5} + S_{3}^{2} · a^{4} + S_{3}^{3} · a^{3} + S_{3}^{2} · a^{2} + S_{3}^{1} · a + S_{3}^{0}$,所以令$a = 1$,得$3^{3} = S_{3}^{0} + S_{3}^{1} + S_{3}^{2} + S_{3}^{3} + S_{3}^{2} + S_{3}^{1} + S_{3}^{0}$,令$a = -1$,得$1 = S_{3}^{0} - S_{3}^{1} + S_{3}^{2} - S_{3}^{3} + S_{3}^{2} - S_{3}^{1} + S_{3}^{0}$,两式相减,得$26 = 2(S_{3}^{1} + S_{3}^{3} + S_{3}^{5})$,故$S_{3}^{1} + S_{3}^{3} + S_{3}^{5} = 13$。
(2)因为$(1 + x + x^{2})^{2025} = S_{2025}^{0} + S_{2025}^{1} · x + S_{2025}^{2} · x^{2} + ·s + S_{2025}^{4049} · x^{4049} + S_{2025}^{4050} · x^{4050}$,$(1 - x)^{2025} = C_{2025}^{0} - C_{2025}^{1} · x + C_{2025}^{2} · x^{2} - ·s - C_{2025}^{2025} · x^{2025}$,所以$(1 - x)^{2025} · (1 + x + x^{2})^{2025}$展开式中,$x^{2025}$的系数为$-[S_{2025}C_{2025}^{0} - S_{2025}C_{2025}^{1} + S_{2025}^{2}C_{2025}^{2} - ·s + (-1)^{k} · S_{2025}^{k}C_{2025}^{k} + ·s + S_{2024}^{2024}C_{2025}^{2024} - S_{2025}^{2025}C_{2025}^{2025}]$。又$(1 - x^{3})^{2025}$的展开式中,$T_{r + 1} = C_{2025} · (-x^{3})^{r}$,由$3r = 2025$,得$r = 675$。所以$x^{2025}$的系数为$-C_{2025}^{675}$。所以$S_{2025}^{0}C_{2025}^{0} - S_{2025}^{1}C_{2025}^{1} + S_{2025}^{2}C_{2025}^{2} - ·s + (-1)^{k} · S_{2025}^{k}C_{2025}^{k} + ·s + S_{2024}^{2024}C_{2025}^{2024} - S_{2025}^{2025}C_{2025}^{2025} = C_{2025}^{675}$。

查看更多完整答案,请扫码查看

关闭