2025年小题狂做高中数学选择性必修第二册苏教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学选择性必修第二册苏教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第4页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
10. (多选题,2024 河北邢台期末)如图,在三棱柱$ABC - A_1B_1C_1$中,$M$,$N$分别是$A_1B$,$B_1C_1$上的点,且$BM = 2A_1M$,$C_1N = 2B_1N$。设$\overrightarrow{AB}=\boldsymbol{a}$,$\overrightarrow{AC}=\boldsymbol{b}$,$\overrightarrow{AA_1}=\boldsymbol{c}$,若$\angle BAC = 90°$,$\angle BAA_1 = \angle CAA_1 = 60°$,$AB = AC = AA_1 = 1$,则下列说法正确的是 (

A.$\overrightarrow{MN}=\frac{1}{3}\boldsymbol{a}+\frac{1}{3}\boldsymbol{b}+\frac{2}{3}\boldsymbol{c}$
B.$|\overrightarrow{MN}|=\frac{\sqrt{5}}{3}$
C.$\overrightarrow{A_1B}\perp\overrightarrow{A_1C_1}$
D.$\cos\langle\overrightarrow{AB_1},\overrightarrow{BC_1}\rangle=\frac{1}{6}$
BD
)A.$\overrightarrow{MN}=\frac{1}{3}\boldsymbol{a}+\frac{1}{3}\boldsymbol{b}+\frac{2}{3}\boldsymbol{c}$
B.$|\overrightarrow{MN}|=\frac{\sqrt{5}}{3}$
C.$\overrightarrow{A_1B}\perp\overrightarrow{A_1C_1}$
D.$\cos\langle\overrightarrow{AB_1},\overrightarrow{BC_1}\rangle=\frac{1}{6}$
答案:
10. BD 因为$BM = 2A_1M$,$C_1N = 2B_1N$,所以$\overrightarrow{A_1M} = \frac{1}{3}\overrightarrow{A_1B_1} = \frac{1}{3}(\overrightarrow{AB} - \overrightarrow{AA_1})$,$\overrightarrow{A_1N} = \overrightarrow{A_1B_1} + \overrightarrow{B_1N} = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{B_1C_1} = \overrightarrow{AB} + \frac{1}{3}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$,所以$\overrightarrow{MN} = \overrightarrow{A_1N} - \overrightarrow{A_1M} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} - \frac{1}{3}(\overrightarrow{AB} - \overrightarrow{AA_1}) = \frac{1}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b} + \frac{1}{3}\overrightarrow{c}$,故A错误。因为$|\boldsymbol{a}| = |\boldsymbol{b}| = |\boldsymbol{c}| = 1$,$\boldsymbol{a} · \boldsymbol{b} = 0$,$\boldsymbol{a} · \boldsymbol{c} = \boldsymbol{b} · \boldsymbol{c} = \frac{1}{2}$,所以$|\overrightarrow{MN}|^2 = \frac{1}{9}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})^2 = \frac{1}{9}(\boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{c}^2 + 2\boldsymbol{a} · \boldsymbol{b} + 2\boldsymbol{a} · \boldsymbol{c} + 2\boldsymbol{b} · \boldsymbol{c}) = \frac{1}{9}(3 + 2) = \frac{5}{9}$,所以$|\overrightarrow{MN}| = \frac{\sqrt{5}}{3}$,故B正确。因为$\overrightarrow{A_1B} = \overrightarrow{AB} - \overrightarrow{AA_1} = \boldsymbol{a} - \boldsymbol{c}$,$\overrightarrow{BC_1} = \overrightarrow{BC} + \overrightarrow{BB_1} = \overrightarrow{AC} - \overrightarrow{AB} + \overrightarrow{AA_1} = \boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}$,所以$\overrightarrow{A_1B} · \overrightarrow{BC_1} = (\boldsymbol{a} + \boldsymbol{c}) · (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}) = \boldsymbol{a} · \boldsymbol{b} + \boldsymbol{b} · \boldsymbol{c} - \boldsymbol{a}^2 + \boldsymbol{c}^2 = \frac{1}{2}$。因为$\overrightarrow{A_1B}^2 = (\boldsymbol{a} + \boldsymbol{c})^2 = \boldsymbol{a}^2 + \boldsymbol{c}^2 + 2\boldsymbol{a} · \boldsymbol{c} = 3$,所以$|\overrightarrow{A_1B}| = \sqrt{3}$。又$\overrightarrow{BC_1}^2 = (-\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{c}^2 - 2\boldsymbol{a} · \boldsymbol{b} - 2\boldsymbol{a} · \boldsymbol{c} + 2\boldsymbol{b} · \boldsymbol{c} = 3$,所以$|\overrightarrow{BC_1}| = \sqrt{3}$,所以$\cos \langle\overrightarrow{A_1B},\overrightarrow{BC_1}\rangle = \frac{\overrightarrow{A_1B} · \overrightarrow{BC_1}}{|\overrightarrow{A_1B}||\overrightarrow{BC_1}|} = \frac{\frac{1}{2}}{\sqrt{3} × \sqrt{3}} = \frac{1}{6}$,故D正确。
11. (2024 浙江嘉兴期末)如图,在三棱锥$P - ABC$中,$AB\perp BC$,$PA\perp$平面$ABC$,$AE\perp PB$于点$E$,$M$是$AC$的中点,$PB = 1$,则$\overrightarrow{EP}·\overrightarrow{EM}$的最小值为

$-\frac{1}{8}$
。
答案:
11. $-\frac{1}{8}$ 连接$EC$,如图。因为$PA \perp$平面$ABC$,$BC \subset$平面$ABC$,所以$PA \perp BC$。又$AB \perp BC$,$PA \cap AB = A$,$PA,AB \subset$平面$PAB$,所以$BC \perp$平面$PAB$。又$PB \subset$平面$PAB$,所以$BC \perp PB$。因为$M$是$AC$的中点,所以$\overrightarrow{EM} = \frac{1}{2}(\overrightarrow{EA} + \overrightarrow{EC}) = \frac{1}{2}\overrightarrow{EA} + \frac{1}{2}(\overrightarrow{EB} + \overrightarrow{BC})$。又$AE \perp PB$,$\overrightarrow{EP} · \overrightarrow{EM} = \overrightarrow{EP} · [\frac{1}{2}\overrightarrow{EA} + \frac{1}{2}(\overrightarrow{EB} + \overrightarrow{BC})] = \frac{1}{2}\overrightarrow{EP} · \overrightarrow{EA} + \frac{1}{2}\overrightarrow{EP} · \overrightarrow{EB} + \frac{1}{2}\overrightarrow{EP} · \overrightarrow{BC} = \frac{1}{2}\overrightarrow{EP} · \overrightarrow{EB} = -\frac{1}{2}|\overrightarrow{EP}||\overrightarrow{EB}| \geq -\frac{1}{2}(\frac{|\overrightarrow{EP}| + |\overrightarrow{EB}|}{2})^2 = -\frac{1}{8}$,当且仅当$|\overrightarrow{EP}| = |\overrightarrow{EB}| = \frac{1}{2}$时,等号成立,所以$\overrightarrow{EP} · \overrightarrow{EM}$的最小值为$-\frac{1}{8}$。
11. $-\frac{1}{8}$ 连接$EC$,如图。因为$PA \perp$平面$ABC$,$BC \subset$平面$ABC$,所以$PA \perp BC$。又$AB \perp BC$,$PA \cap AB = A$,$PA,AB \subset$平面$PAB$,所以$BC \perp$平面$PAB$。又$PB \subset$平面$PAB$,所以$BC \perp PB$。因为$M$是$AC$的中点,所以$\overrightarrow{EM} = \frac{1}{2}(\overrightarrow{EA} + \overrightarrow{EC}) = \frac{1}{2}\overrightarrow{EA} + \frac{1}{2}(\overrightarrow{EB} + \overrightarrow{BC})$。又$AE \perp PB$,$\overrightarrow{EP} · \overrightarrow{EM} = \overrightarrow{EP} · [\frac{1}{2}\overrightarrow{EA} + \frac{1}{2}(\overrightarrow{EB} + \overrightarrow{BC})] = \frac{1}{2}\overrightarrow{EP} · \overrightarrow{EA} + \frac{1}{2}\overrightarrow{EP} · \overrightarrow{EB} + \frac{1}{2}\overrightarrow{EP} · \overrightarrow{BC} = \frac{1}{2}\overrightarrow{EP} · \overrightarrow{EB} = -\frac{1}{2}|\overrightarrow{EP}||\overrightarrow{EB}| \geq -\frac{1}{2}(\frac{|\overrightarrow{EP}| + |\overrightarrow{EB}|}{2})^2 = -\frac{1}{8}$,当且仅当$|\overrightarrow{EP}| = |\overrightarrow{EB}| = \frac{1}{2}$时,等号成立,所以$\overrightarrow{EP} · \overrightarrow{EM}$的最小值为$-\frac{1}{8}$。
12. (2024 湖北黄冈阶段练习)如图,在平行六面体$ABCD - A_1B_1C_1D_1$中,$AB = AD = 1$,$AA_1 = 2$,$\angle BAD = \angle BAA_1 = \angle DAA_1 = 60°$,求:
(1) $AC_1$的长;
(2) $BD_1$与$AC$所成角的余弦值。

(1) $AC_1$的长;
(2) $BD_1$与$AC$所成角的余弦值。
答案:
12. 解:
(1) 设$\overrightarrow{AB} = \boldsymbol{a}$,$\overrightarrow{AD} = \boldsymbol{b}$,$\overrightarrow{AA_1} = \boldsymbol{c}$,则$\boldsymbol{a} · \boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}|\cos 60^{\circ} = \frac{1}{2}$,$\boldsymbol{a} · \boldsymbol{c} = |\boldsymbol{a}||\boldsymbol{c}|\cos 60^{\circ} = 1$,$\boldsymbol{b} · \boldsymbol{c} = |\boldsymbol{b}||\boldsymbol{c}|\cos 60^{\circ} = 1$。
因为$\overrightarrow{AC_1} = \boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}$,所以在平行四边形$AA_1C_1C$中,$\overrightarrow{AC_1} = \overrightarrow{AC} + \overrightarrow{AA_1} = \boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}$,则$|\overrightarrow{AC_1}|^2 = \overrightarrow{AC_1}^2 = (\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{c}^2 + 2\boldsymbol{a} · \boldsymbol{b} + 2\boldsymbol{a} · \boldsymbol{c} + 2\boldsymbol{b} · \boldsymbol{c} = 1 + 1 + 4 + 2 × \frac{1}{2} + 2 × 1 + 2 × 1 = 11$,所以$|\overrightarrow{AC_1}| = \sqrt{11}$,所以$AC_1$的长为$\sqrt{11}$。
(2) 由$\overrightarrow{AC} = \boldsymbol{a} + \boldsymbol{b}$,可得$|\overrightarrow{AC}|^2 = (\boldsymbol{a} + \boldsymbol{b})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + 2\boldsymbol{a} · \boldsymbol{b} = 1 + 1 + 1 = 3$,所以$|\overrightarrow{AC}| = \sqrt{3}$。
由$\overrightarrow{BD_1} = \overrightarrow{AD_1} - \overrightarrow{AB} = \boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}$,可得$|\overrightarrow{BD_1}|^2 = (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{c}^2 - 2\boldsymbol{a} · \boldsymbol{b} - 2\boldsymbol{a} · \boldsymbol{c} + 2\boldsymbol{b} · \boldsymbol{c} = 1 + 1 + 4 - 1 - 2 + 2 = 5$,所以$|\overrightarrow{BD_1}| = \sqrt{5}$,$\cos \langle\overrightarrow{AC},\overrightarrow{BD_1}\rangle = \frac{\overrightarrow{AC} · \overrightarrow{BD_1}}{|\overrightarrow{AC}||\overrightarrow{BD_1}|} = \frac{(\boldsymbol{a} + \boldsymbol{b}) · (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a})}{\sqrt{3} × \sqrt{5}} = \frac{\boldsymbol{a} · \boldsymbol{c} - \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{b} · \boldsymbol{c}}{\sqrt{15}} = \frac{1 - 1 + 1 + 1}{\sqrt{15}} = \frac{2\sqrt{15}}{15}$。
所以$BD_1$与$AC$所成角的余弦值为$\frac{2\sqrt{15}}{15}$。
(1) 设$\overrightarrow{AB} = \boldsymbol{a}$,$\overrightarrow{AD} = \boldsymbol{b}$,$\overrightarrow{AA_1} = \boldsymbol{c}$,则$\boldsymbol{a} · \boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}|\cos 60^{\circ} = \frac{1}{2}$,$\boldsymbol{a} · \boldsymbol{c} = |\boldsymbol{a}||\boldsymbol{c}|\cos 60^{\circ} = 1$,$\boldsymbol{b} · \boldsymbol{c} = |\boldsymbol{b}||\boldsymbol{c}|\cos 60^{\circ} = 1$。
因为$\overrightarrow{AC_1} = \boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}$,所以在平行四边形$AA_1C_1C$中,$\overrightarrow{AC_1} = \overrightarrow{AC} + \overrightarrow{AA_1} = \boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}$,则$|\overrightarrow{AC_1}|^2 = \overrightarrow{AC_1}^2 = (\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{c}^2 + 2\boldsymbol{a} · \boldsymbol{b} + 2\boldsymbol{a} · \boldsymbol{c} + 2\boldsymbol{b} · \boldsymbol{c} = 1 + 1 + 4 + 2 × \frac{1}{2} + 2 × 1 + 2 × 1 = 11$,所以$|\overrightarrow{AC_1}| = \sqrt{11}$,所以$AC_1$的长为$\sqrt{11}$。
(2) 由$\overrightarrow{AC} = \boldsymbol{a} + \boldsymbol{b}$,可得$|\overrightarrow{AC}|^2 = (\boldsymbol{a} + \boldsymbol{b})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + 2\boldsymbol{a} · \boldsymbol{b} = 1 + 1 + 1 = 3$,所以$|\overrightarrow{AC}| = \sqrt{3}$。
由$\overrightarrow{BD_1} = \overrightarrow{AD_1} - \overrightarrow{AB} = \boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a}$,可得$|\overrightarrow{BD_1}|^2 = (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a})^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{c}^2 - 2\boldsymbol{a} · \boldsymbol{b} - 2\boldsymbol{a} · \boldsymbol{c} + 2\boldsymbol{b} · \boldsymbol{c} = 1 + 1 + 4 - 1 - 2 + 2 = 5$,所以$|\overrightarrow{BD_1}| = \sqrt{5}$,$\cos \langle\overrightarrow{AC},\overrightarrow{BD_1}\rangle = \frac{\overrightarrow{AC} · \overrightarrow{BD_1}}{|\overrightarrow{AC}||\overrightarrow{BD_1}|} = \frac{(\boldsymbol{a} + \boldsymbol{b}) · (\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{a})}{\sqrt{3} × \sqrt{5}} = \frac{\boldsymbol{a} · \boldsymbol{c} - \boldsymbol{a}^2 + \boldsymbol{b}^2 + \boldsymbol{b} · \boldsymbol{c}}{\sqrt{15}} = \frac{1 - 1 + 1 + 1}{\sqrt{15}} = \frac{2\sqrt{15}}{15}$。
所以$BD_1$与$AC$所成角的余弦值为$\frac{2\sqrt{15}}{15}$。
13. (2024 福建三明阶段检测)如图,正四面体$V - ABC$的高$VD$的中点为$O$,$VC$的中点为$M$。
(1) 求证:$AO$,$BO$,$CO$两两垂直;
(2) 求$\langle\overrightarrow{DM},\overrightarrow{AO}\rangle$的大小。

(1) 求证:$AO$,$BO$,$CO$两两垂直;
(2) 求$\langle\overrightarrow{DM},\overrightarrow{AO}\rangle$的大小。
答案:
13.
(1) 证明:设$\overrightarrow{VA} = \boldsymbol{a}$,$\overrightarrow{VB} = \boldsymbol{b}$,$\overrightarrow{VC} = \boldsymbol{c}$,正四面体的棱长为1。因为$\overrightarrow{VD} = \overrightarrow{VB} + \overrightarrow{BD} = \overrightarrow{VB} + \frac{2}{3} × \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}) = \overrightarrow{VB} + \frac{1}{3}(\overrightarrow{VA} - \overrightarrow{VB} + \overrightarrow{VC} - \overrightarrow{VB}) = \frac{1}{3}(\overrightarrow{VA} + \overrightarrow{VB} + \overrightarrow{VC}) = \frac{1}{3}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})$,
$\overrightarrow{AO} = \overrightarrow{VO} - \overrightarrow{VA} = \frac{1}{2}\overrightarrow{VD} - \overrightarrow{VA} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) - \boldsymbol{a} = \frac{1}{6}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a})$,
$\overrightarrow{BO} = \overrightarrow{VO} - \overrightarrow{VB} = \frac{1}{2}\overrightarrow{VD} - \overrightarrow{VB} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) - \boldsymbol{b} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{c} - 5\boldsymbol{b})$,
$\overrightarrow{CO} = \overrightarrow{VO} - \overrightarrow{VC} = \frac{1}{2}\overrightarrow{VD} - \overrightarrow{VC} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) - \boldsymbol{c} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} - 5\boldsymbol{c})$,
所以$\overrightarrow{AO} · \overrightarrow{BO} = \frac{1}{36}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a}) · (\boldsymbol{a} + \boldsymbol{c} - 5\boldsymbol{b}) = \frac{1}{36}(18\boldsymbol{a} · \boldsymbol{b} - 9|\boldsymbol{a}|^2) = \frac{1}{36}(18 × 1 × 1 × \cos \frac{\pi}{3} - 9) = 0$,
所以$\overrightarrow{AO} \perp \overrightarrow{BO}$,即$AO \perp BO$。
同理,$AO \perp CO$,$BO \perp CO$,所以$AO$,$BO$,$CO$两两垂直。
(2) 解:$\overrightarrow{DM} = \overrightarrow{DV} + \overrightarrow{VM} = -\frac{1}{3}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) + \frac{1}{2}\boldsymbol{c} = \frac{1}{6}(-2\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c})$,
所以$|\overrightarrow{DM}| = \sqrt{[\frac{1}{6}(-2\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c})]^2} = \sqrt{\frac{1}{36}(9\boldsymbol{a}^2 + 8\boldsymbol{a} · \boldsymbol{b} - 4\boldsymbol{a} · \boldsymbol{c} - 4\boldsymbol{b} · \boldsymbol{c})} = \sqrt{\frac{1}{36} × 9} = \frac{1}{2}$。
又$|\overrightarrow{AO}| = \sqrt{[\frac{1}{6}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a})]^2} = \sqrt{\frac{1}{36}(27\boldsymbol{a}^2 - 18\boldsymbol{a} · \boldsymbol{b})} = \sqrt{\frac{1}{36} × (27 - 9)} = \frac{\sqrt{2}}{2}$,
$\overrightarrow{DM} · \overrightarrow{AO} = \frac{1}{6}(-2\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c}) · \frac{1}{6}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a}) = \frac{1}{36} × 9\boldsymbol{a}^2 = \frac{1}{36} × 9 = \frac{1}{4}$,
所以$\cos \langle\overrightarrow{DM},\overrightarrow{AO}\rangle = \frac{\overrightarrow{DM} · \overrightarrow{AO}}{|\overrightarrow{DM}||\overrightarrow{AO}|} = \frac{\frac{1}{4}}{\frac{1}{2} × \frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{2}$。
又$\langle\overrightarrow{DM},\overrightarrow{AO}\rangle \in [0,\pi]$,所以$\langle\overrightarrow{DM},\overrightarrow{AO}\rangle = \frac{\pi}{4}$。
(1) 证明:设$\overrightarrow{VA} = \boldsymbol{a}$,$\overrightarrow{VB} = \boldsymbol{b}$,$\overrightarrow{VC} = \boldsymbol{c}$,正四面体的棱长为1。因为$\overrightarrow{VD} = \overrightarrow{VB} + \overrightarrow{BD} = \overrightarrow{VB} + \frac{2}{3} × \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}) = \overrightarrow{VB} + \frac{1}{3}(\overrightarrow{VA} - \overrightarrow{VB} + \overrightarrow{VC} - \overrightarrow{VB}) = \frac{1}{3}(\overrightarrow{VA} + \overrightarrow{VB} + \overrightarrow{VC}) = \frac{1}{3}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c})$,
$\overrightarrow{AO} = \overrightarrow{VO} - \overrightarrow{VA} = \frac{1}{2}\overrightarrow{VD} - \overrightarrow{VA} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) - \boldsymbol{a} = \frac{1}{6}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a})$,
$\overrightarrow{BO} = \overrightarrow{VO} - \overrightarrow{VB} = \frac{1}{2}\overrightarrow{VD} - \overrightarrow{VB} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) - \boldsymbol{b} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{c} - 5\boldsymbol{b})$,
$\overrightarrow{CO} = \overrightarrow{VO} - \overrightarrow{VC} = \frac{1}{2}\overrightarrow{VD} - \overrightarrow{VC} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) - \boldsymbol{c} = \frac{1}{6}(\boldsymbol{a} + \boldsymbol{b} - 5\boldsymbol{c})$,
所以$\overrightarrow{AO} · \overrightarrow{BO} = \frac{1}{36}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a}) · (\boldsymbol{a} + \boldsymbol{c} - 5\boldsymbol{b}) = \frac{1}{36}(18\boldsymbol{a} · \boldsymbol{b} - 9|\boldsymbol{a}|^2) = \frac{1}{36}(18 × 1 × 1 × \cos \frac{\pi}{3} - 9) = 0$,
所以$\overrightarrow{AO} \perp \overrightarrow{BO}$,即$AO \perp BO$。
同理,$AO \perp CO$,$BO \perp CO$,所以$AO$,$BO$,$CO$两两垂直。
(2) 解:$\overrightarrow{DM} = \overrightarrow{DV} + \overrightarrow{VM} = -\frac{1}{3}(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) + \frac{1}{2}\boldsymbol{c} = \frac{1}{6}(-2\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c})$,
所以$|\overrightarrow{DM}| = \sqrt{[\frac{1}{6}(-2\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c})]^2} = \sqrt{\frac{1}{36}(9\boldsymbol{a}^2 + 8\boldsymbol{a} · \boldsymbol{b} - 4\boldsymbol{a} · \boldsymbol{c} - 4\boldsymbol{b} · \boldsymbol{c})} = \sqrt{\frac{1}{36} × 9} = \frac{1}{2}$。
又$|\overrightarrow{AO}| = \sqrt{[\frac{1}{6}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a})]^2} = \sqrt{\frac{1}{36}(27\boldsymbol{a}^2 - 18\boldsymbol{a} · \boldsymbol{b})} = \sqrt{\frac{1}{36} × (27 - 9)} = \frac{\sqrt{2}}{2}$,
$\overrightarrow{DM} · \overrightarrow{AO} = \frac{1}{6}(-2\boldsymbol{a} - 2\boldsymbol{b} + \boldsymbol{c}) · \frac{1}{6}(\boldsymbol{b} + \boldsymbol{c} - 5\boldsymbol{a}) = \frac{1}{36} × 9\boldsymbol{a}^2 = \frac{1}{36} × 9 = \frac{1}{4}$,
所以$\cos \langle\overrightarrow{DM},\overrightarrow{AO}\rangle = \frac{\overrightarrow{DM} · \overrightarrow{AO}}{|\overrightarrow{DM}||\overrightarrow{AO}|} = \frac{\frac{1}{4}}{\frac{1}{2} × \frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{2}$。
又$\langle\overrightarrow{DM},\overrightarrow{AO}\rangle \in [0,\pi]$,所以$\langle\overrightarrow{DM},\overrightarrow{AO}\rangle = \frac{\pi}{4}$。
14. (多选题,2024 辽宁大连阶段练习)在三维空间中,定义向量的外积:$\boldsymbol{a}×\boldsymbol{b}$叫作向量$\boldsymbol{a}$与$\boldsymbol{b}$的外积。它是一个向量,满足下列两个条件:①$\boldsymbol{a}\perp(\boldsymbol{a}×\boldsymbol{b})$,$\boldsymbol{b}\perp(\boldsymbol{a}×\boldsymbol{b})$,且$\boldsymbol{a}$,$\boldsymbol{b}$和$\boldsymbol{a}×\boldsymbol{b}$构成右手系(三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②$\boldsymbol{a}×\boldsymbol{b}$的模$|\boldsymbol{a}×\boldsymbol{b}| = |\boldsymbol{a}||\boldsymbol{b}|\sin\langle\boldsymbol{a},\boldsymbol{b}\rangle$($\langle\boldsymbol{a},\boldsymbol{b}\rangle$表示向量$\boldsymbol{a}$,$\boldsymbol{b}$的夹角)。在正方体$ABCD - A_1B_1C_1D_1$中,有以下四个结论,正确的有 (

A.$|\overrightarrow{AB_1}×\overrightarrow{AC}| = |\overrightarrow{AD_1}×\overrightarrow{D_1B_1}|$
B.$\overrightarrow{AB}×\overrightarrow{AD}=\overrightarrow{AD}×\overrightarrow{AB}$
C.$\overrightarrow{A_1C_1}×\overrightarrow{A_1D}$与$\overrightarrow{BD_1}$共线
D.$(\overrightarrow{BC}×\overrightarrow{AC})·\overrightarrow{A_1A}$与正方体体积数值相等
ACD
)A.$|\overrightarrow{AB_1}×\overrightarrow{AC}| = |\overrightarrow{AD_1}×\overrightarrow{D_1B_1}|$
B.$\overrightarrow{AB}×\overrightarrow{AD}=\overrightarrow{AD}×\overrightarrow{AB}$
C.$\overrightarrow{A_1C_1}×\overrightarrow{A_1D}$与$\overrightarrow{BD_1}$共线
D.$(\overrightarrow{BC}×\overrightarrow{AC})·\overrightarrow{A_1A}$与正方体体积数值相等
答案:
14. ACD 如图,设正方体的棱长为1。对于A,易知$\langle\overrightarrow{AB_1},\overrightarrow{AC_1}\rangle = \langle\overrightarrow{D_1A_1},\overrightarrow{D_1C_1}\rangle = \frac{\pi}{3}$,$|\overrightarrow{AB_1} × \overrightarrow{AC_1}| = |\overrightarrow{AB_1}| · |\overrightarrow{AC_1}|\sin\frac{\pi}{3} = (\sqrt{2})^2 × \frac{\sqrt{3}}{2} = \sqrt{3}$,
$|\overrightarrow{AD_1} × \overrightarrow{D_1B_1}| = |\overrightarrow{AD_1}| · |\overrightarrow{D_1B_1}| · \sin\frac{2\pi}{3} = \sqrt{3}$,所以$|\overrightarrow{AB_1} × \overrightarrow{AC_1}| = |\overrightarrow{AD_1} × \overrightarrow{D_1B_1}|$,所以A正确;对于B,由$\boldsymbol{a}$,$\boldsymbol{b}$和$\boldsymbol{a} × \boldsymbol{b}$构成右手系知,$\boldsymbol{a} × \boldsymbol{b}$与$\boldsymbol{b} × \boldsymbol{a}$方向相反,即$\boldsymbol{a} × \boldsymbol{b} = -\boldsymbol{b} × \boldsymbol{a}$,所以B错误;对于C,$A_1C_1 \perp B_1D_1$,$A_1C_1 \perp BB_1$,$B_1D_1 \cap BB_1 = B_1$,则$A_1C_1 \perp$平面$BB_1D_1D$,又$BD_1 \subset$平面$BB_1D_1D$,所以$BD_1 \perp A_1C_1$,同理可得$BD_1 \perp A_1D$,再由右手系知,$A_1C_1 × A_1D_1$与$BD_1$共线,所以C正确;对于D,$|\overrightarrow{BC} × \overrightarrow{AC}| = |\overrightarrow{BC}| · |\overrightarrow{AC}| · \sin\frac{\pi}{4} = 1 × \sqrt{2} × \frac{\sqrt{2}}{2} = 1$,$\overrightarrow{BC} × \overrightarrow{AC}$与$\overrightarrow{AA_1}$共线,$(\overrightarrow{BC} × \overrightarrow{AC}) · \overrightarrow{AA_1} = |\overrightarrow{BC} × \overrightarrow{AC}||\overrightarrow{AA_1}|\cos \langle\overrightarrow{BC} × \overrightarrow{AC},\overrightarrow{AA_1}\rangle = \cos \langle\overrightarrow{BC} × \overrightarrow{AC},\overrightarrow{AA_1}\rangle = \cos 0 = 1$,正方体体积为1,所以D正确。
14. ACD 如图,设正方体的棱长为1。对于A,易知$\langle\overrightarrow{AB_1},\overrightarrow{AC_1}\rangle = \langle\overrightarrow{D_1A_1},\overrightarrow{D_1C_1}\rangle = \frac{\pi}{3}$,$|\overrightarrow{AB_1} × \overrightarrow{AC_1}| = |\overrightarrow{AB_1}| · |\overrightarrow{AC_1}|\sin\frac{\pi}{3} = (\sqrt{2})^2 × \frac{\sqrt{3}}{2} = \sqrt{3}$,
$|\overrightarrow{AD_1} × \overrightarrow{D_1B_1}| = |\overrightarrow{AD_1}| · |\overrightarrow{D_1B_1}| · \sin\frac{2\pi}{3} = \sqrt{3}$,所以$|\overrightarrow{AB_1} × \overrightarrow{AC_1}| = |\overrightarrow{AD_1} × \overrightarrow{D_1B_1}|$,所以A正确;对于B,由$\boldsymbol{a}$,$\boldsymbol{b}$和$\boldsymbol{a} × \boldsymbol{b}$构成右手系知,$\boldsymbol{a} × \boldsymbol{b}$与$\boldsymbol{b} × \boldsymbol{a}$方向相反,即$\boldsymbol{a} × \boldsymbol{b} = -\boldsymbol{b} × \boldsymbol{a}$,所以B错误;对于C,$A_1C_1 \perp B_1D_1$,$A_1C_1 \perp BB_1$,$B_1D_1 \cap BB_1 = B_1$,则$A_1C_1 \perp$平面$BB_1D_1D$,又$BD_1 \subset$平面$BB_1D_1D$,所以$BD_1 \perp A_1C_1$,同理可得$BD_1 \perp A_1D$,再由右手系知,$A_1C_1 × A_1D_1$与$BD_1$共线,所以C正确;对于D,$|\overrightarrow{BC} × \overrightarrow{AC}| = |\overrightarrow{BC}| · |\overrightarrow{AC}| · \sin\frac{\pi}{4} = 1 × \sqrt{2} × \frac{\sqrt{2}}{2} = 1$,$\overrightarrow{BC} × \overrightarrow{AC}$与$\overrightarrow{AA_1}$共线,$(\overrightarrow{BC} × \overrightarrow{AC}) · \overrightarrow{AA_1} = |\overrightarrow{BC} × \overrightarrow{AC}||\overrightarrow{AA_1}|\cos \langle\overrightarrow{BC} × \overrightarrow{AC},\overrightarrow{AA_1}\rangle = \cos \langle\overrightarrow{BC} × \overrightarrow{AC},\overrightarrow{AA_1}\rangle = \cos 0 = 1$,正方体体积为1,所以D正确。
查看更多完整答案,请扫码查看