1. 两数相乘,同号得
正
,异号得负
,并把绝对值
相乘.0
与任何数相乘都得 0.
答案:
正 负 绝对值 0
2. 几个有理数相乘,先确定积的
符号
,再把绝对值相乘.
答案:
符号
1. 在$-1$,$-2$,$3$,$-4$这四个数中任取两个数相乘,其积的最大值是
8
.
答案:
8
2. 计算:
(1)$6×(-9)$; (2)$(-4)×6$; (3)$(-6)×(-1)$;
(4)$(-6)×0$; (5)$\frac {2}{3}×(-\frac {9}{4})$; (6)$(-\frac {1}{3})×\frac {1}{4}$.
(1)$6×(-9)$; (2)$(-4)×6$; (3)$(-6)×(-1)$;
(4)$(-6)×0$; (5)$\frac {2}{3}×(-\frac {9}{4})$; (6)$(-\frac {1}{3})×\frac {1}{4}$.
答案:
(1)-54
(2)-24
(3)6
(4)0
(5)$-\frac{3}{2}$
(6)$-\frac{1}{12}$
(1)-54
(2)-24
(3)6
(4)0
(5)$-\frac{3}{2}$
(6)$-\frac{1}{12}$
3. 计算:
(1)$(-2\frac {1}{3})×(-6)$; (2)$2\frac {2}{3}×(-\frac {25}{4})$;
(3)$-2.8×(-3\frac {11}{14})$; (4)$-\frac {24}{5}×(-8\frac {3}{8})$.
(1)$(-2\frac {1}{3})×(-6)$; (2)$2\frac {2}{3}×(-\frac {25}{4})$;
(3)$-2.8×(-3\frac {11}{14})$; (4)$-\frac {24}{5}×(-8\frac {3}{8})$.
答案:
(1)14
(2)$-\frac{50}{3}$
(3)10.6
(4)$\frac{201}{5}$
(1)14
(2)$-\frac{50}{3}$
(3)10.6
(4)$\frac{201}{5}$
4. 计算:
(1)$1\frac {1}{2}×(-2\frac {1}{3})×(-6)$; (2)$-0.75×(-0.4)×1\frac {2}{3}$;
(3)$(-3)×\frac {5}{6}×(-\frac {9}{5})×(-\frac {1}{4})$; (4)$0.6×(-\frac {3}{4})×(-\frac {5}{6})×(-2\frac {2}{3})$.
(1)$1\frac {1}{2}×(-2\frac {1}{3})×(-6)$; (2)$-0.75×(-0.4)×1\frac {2}{3}$;
(3)$(-3)×\frac {5}{6}×(-\frac {9}{5})×(-\frac {1}{4})$; (4)$0.6×(-\frac {3}{4})×(-\frac {5}{6})×(-2\frac {2}{3})$.
答案:
解:
(1)原式=$\frac{3}{2}×\frac{7}{3}×6=21$.
(2)原式=$\frac{3}{4}×\frac{2}{5}×\frac{5}{3}=\frac{1}{2}$.
(3)原式=$(-\frac{5}{2})×(-\frac{9}{5})×(-\frac{1}{4})=\frac{9}{2}×(-\frac{1}{4})=-\frac{9}{8}$.
(4)原式=$-\frac{3}{5}×\frac{3}{4}×\frac{5}{6}×\frac{8}{3}=-1$.
(1)原式=$\frac{3}{2}×\frac{7}{3}×6=21$.
(2)原式=$\frac{3}{4}×\frac{2}{5}×\frac{5}{3}=\frac{1}{2}$.
(3)原式=$(-\frac{5}{2})×(-\frac{9}{5})×(-\frac{1}{4})=\frac{9}{2}×(-\frac{1}{4})=-\frac{9}{8}$.
(4)原式=$-\frac{3}{5}×\frac{3}{4}×\frac{5}{6}×\frac{8}{3}=-1$.
查看更多完整答案,请扫码查看