27. 观察下列分母有理化运算:$\frac{1}{1+\sqrt{2}}= -1+\sqrt{2}$,$\frac{1}{\sqrt{2}+\sqrt{3}}= -\sqrt{2}+\sqrt{3}$,$\frac{1}{\sqrt{3}+\sqrt{4}}= -\sqrt{3}+\sqrt{4}$,…$$,$\frac{1}{\sqrt{2012}+\sqrt{2013}}= -\sqrt{2012}+\sqrt{2013}$,$\frac{1}{\sqrt{2013}+\sqrt{2014}}= -\sqrt{2013}+\sqrt{2014}$.
利用上面的规律计算:
$(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+…+\frac{1}{\sqrt{2015}+\sqrt{2016}}+\frac{1}{\sqrt{2016}+\sqrt{2017}})(1+\sqrt{2017})$.
利用上面的规律计算:
$(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+…+\frac{1}{\sqrt{2015}+\sqrt{2016}}+\frac{1}{\sqrt{2016}+\sqrt{2017}})(1+\sqrt{2017})$.
答案:
2016.
查看更多完整答案,请扫码查看