2025年文涛书业假期作业快乐暑假八年级数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年文涛书业假期作业快乐暑假八年级数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
11. 不等式组$\begin{cases}x > a,\\x < 3\end{cases}$的整数解有三个,则$a$的取值范围是
$-1 \leq a < 0$
.
答案:
$-1 \leq a < 0$
12. 如图,在$□ ABCD$中,$\angle B = 115^{\circ}$,延长$AD$至点$F$,延长$CD$至点$E$,连接$EF$,则$\angle E + \angle F =$

$65^{\circ}$
.
答案:
$65^{\circ}$
13. 如图,在一块边长为$a\ cm$的正方形纸板四角,各剪去一个边长为$b\ cm$($b < \frac{a}{2}$)的正方形,利用因式分解计算,当$a = 13.2$,$b = 3.4$时剩余部分的面积为

128
$cm^{2}$.
答案:
解:$a^{2} - 4b^{2} = (a + 2b)(a - 2b) = 20 \times 6.4 = 128(cm^{2})$
14. 如图,点$D$在$AC$上,点$E$在$AB$上,且$AB = AC$,$BC = BD$,$AD = DE = BE$,求$\angle A$的度数.

解:设$∠A = x$,$\because AD = DE = BE$,$\therefore ∠DEA = ∠A = x$,$∠EBD = ∠EDB$,又$\because ∠DEA = ∠EBD + ∠EDB$,$\therefore ∠EBD = ∠EDB = \frac{1}{2}x$,$\therefore ∠BDC = ∠A + ∠ABD = \frac{3}{2}x$。$\because BD = BC$,$AB = AC$,$\therefore ∠BDC = ∠BCD = ∠ABC = \frac{3}{2}x$,在$\triangle ABC$中,$∠A + ∠ABC + ∠ACB = 180^{\circ}$,$\therefore x + \frac{3}{2}x + \frac{3}{2}x = 180^{\circ}$,$\therefore x = 45^{\circ}$,即$∠A = $
解:设$∠A = x$,$\because AD = DE = BE$,$\therefore ∠DEA = ∠A = x$,$∠EBD = ∠EDB$,又$\because ∠DEA = ∠EBD + ∠EDB$,$\therefore ∠EBD = ∠EDB = \frac{1}{2}x$,$\therefore ∠BDC = ∠A + ∠ABD = \frac{3}{2}x$。$\because BD = BC$,$AB = AC$,$\therefore ∠BDC = ∠BCD = ∠ABC = \frac{3}{2}x$,在$\triangle ABC$中,$∠A + ∠ABC + ∠ACB = 180^{\circ}$,$\therefore x + \frac{3}{2}x + \frac{3}{2}x = 180^{\circ}$,$\therefore x = 45^{\circ}$,即$∠A = $
$45^{\circ}$
。
答案:
解:设$∠A = x$,$\because AD = DE = BE$,
$\therefore ∠DEA = ∠A = x$,$∠EBD = ∠EDB$,
又$\because ∠DEA = ∠EBD + ∠EDB$,
$\therefore ∠EBD = ∠EDB = \frac{1}{2}x$,
$\therefore ∠BDC = ∠A + ∠ABD = \frac{3}{2}x$。
$\because BD = BC$,$AB = AC$,
$\therefore ∠BDC = ∠BCD = ∠ABC = \frac{3}{2}x$,
在$\triangle ABC$中,$∠A + ∠ABC + ∠ACB = 180^{\circ}$,
$\therefore x + \frac{3}{2}x + \frac{3}{2}x = 180^{\circ}$,
$\therefore x = 45^{\circ}$,即$∠A = 45^{\circ}$。
$\therefore ∠DEA = ∠A = x$,$∠EBD = ∠EDB$,
又$\because ∠DEA = ∠EBD + ∠EDB$,
$\therefore ∠EBD = ∠EDB = \frac{1}{2}x$,
$\therefore ∠BDC = ∠A + ∠ABD = \frac{3}{2}x$。
$\because BD = BC$,$AB = AC$,
$\therefore ∠BDC = ∠BCD = ∠ABC = \frac{3}{2}x$,
在$\triangle ABC$中,$∠A + ∠ABC + ∠ACB = 180^{\circ}$,
$\therefore x + \frac{3}{2}x + \frac{3}{2}x = 180^{\circ}$,
$\therefore x = 45^{\circ}$,即$∠A = 45^{\circ}$。
查看更多完整答案,请扫码查看