16.(8分)已知$x=\sqrt{3}+3$,求式子$x^2 - 6x + 3$的值.
答案:
解:$x^{2}-6x + 3=(x - 3)^{2}-6$.$\because x=\sqrt{3}+3$,$\therefore$原式 = $(\sqrt{3}+3 - 3)^{2}-6=(\sqrt{3})^{2}-6=-3$.
17.(8分)有一道题为“先化简,再求值:$2a-\sqrt{a^2 - 4a + 4}$,其中$a=\sqrt{3}$”.小刚的解法如下:$2a-\sqrt{a^2 - 4a + 4}=2a-\sqrt{(a - 2)^2}=2a - a + 2=a + 2$,当$a=\sqrt{3}$时,原式$=\sqrt{3}+2$,小刚的解法正确吗?若不正确,请改正.
答案:
解:小刚的解法错误,$2a-\sqrt{a^{2}-4a + 4}=2a-\sqrt{(a - 2)^{2}}=2a-\vert a - 2\vert$,当$a=\sqrt{3}$时,$a - 2\lt0$,$\therefore$原式 = $2a + a - 2=3a - 2=3\sqrt{3}-2$.
18.(8分)如图,有一张边长为$6\sqrt{2}cm$的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为$\sqrt{2}cm$.求:
(1)剪掉四个角后,制作长方体盒子的纸板的面积;
(2)长方体盒子的体积.

(1)剪掉四个角后,制作长方体盒子的纸板的面积;
(2)长方体盒子的体积.
答案:
(1)解:制作长方体盒子的纸板的面积为$(6\sqrt{2})^{2}-4\times(\sqrt{2})^{2}=64(cm^{2})$.
(2)长方体盒子的体积为$(6\sqrt{2}-2\sqrt{2})(6\sqrt{2}-2\sqrt{2})\times\sqrt{2}=32\sqrt{2}(cm^{3})$.
(1)解:制作长方体盒子的纸板的面积为$(6\sqrt{2})^{2}-4\times(\sqrt{2})^{2}=64(cm^{2})$.
(2)长方体盒子的体积为$(6\sqrt{2}-2\sqrt{2})(6\sqrt{2}-2\sqrt{2})\times\sqrt{2}=32\sqrt{2}(cm^{3})$.
19.(12分)阅读材料:像$(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})=3,\sqrt{a}\cdot\sqrt{a}=a(a\geqslant0),(\sqrt{b}+1)(\sqrt{b}-1)=b - 1(b\geqslant0),\cdots$两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,$\sqrt{3}$与$\sqrt{3},\sqrt{2}+1$与$\sqrt{2}-1,2\sqrt{3}+3\sqrt{5}$与$2\sqrt{3}-3\sqrt{5}$等都是互为有理化因式.
在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.
例如,$\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{2\sqrt{3}\times\sqrt{3}}=\frac{\sqrt{3}}{6}$;$\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=3 + 2\sqrt{2}$.
解答下列问题:
(1)$3-\sqrt{7}$与______互为有理化因式,将$\frac{2}{3\sqrt{2}}$分母有理化得______,$\frac{2}{\sqrt{5}-\sqrt{3}}$可以化简为______;
(2)若$a=\frac{1}{\sqrt{2}-1}$,求$3a^2 - 6a - 1$的值.
在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.
例如,$\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{2\sqrt{3}\times\sqrt{3}}=\frac{\sqrt{3}}{6}$;$\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=3 + 2\sqrt{2}$.
解答下列问题:
(1)$3-\sqrt{7}$与______互为有理化因式,将$\frac{2}{3\sqrt{2}}$分母有理化得______,$\frac{2}{\sqrt{5}-\sqrt{3}}$可以化简为______;
(2)若$a=\frac{1}{\sqrt{2}-1}$,求$3a^2 - 6a - 1$的值.
答案:
(1)$3+\sqrt{7}$ $\frac{\sqrt{2}}{3}$ $\sqrt{5}+\sqrt{3}$
(2)解:$\because a=\frac{\sqrt{2}+1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}+1$,$\therefore a - 1=\sqrt{2}$,$\therefore a^{2}-2a + 1=2$,$\therefore a^{2}-2a=1$,$\therefore 3a^{2}-6a=3$,$\therefore 3a^{2}-6a - 1=2$.
(1)$3+\sqrt{7}$ $\frac{\sqrt{2}}{3}$ $\sqrt{5}+\sqrt{3}$
(2)解:$\because a=\frac{\sqrt{2}+1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}+1$,$\therefore a - 1=\sqrt{2}$,$\therefore a^{2}-2a + 1=2$,$\therefore a^{2}-2a=1$,$\therefore 3a^{2}-6a=3$,$\therefore 3a^{2}-6a - 1=2$.
查看更多完整答案,请扫码查看