2025年课堂点睛八年级数学下册人教版安徽专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课堂点睛八年级数学下册人教版安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课堂点睛八年级数学下册人教版安徽专版》

1.如图,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD相交于点O,且BE:ED = 1:3,AB = 6cm,求AC的长.
           
答案: 解:$\because BE:ED = 1:3$,设$BE = x$,$ED = 3x$,$\therefore BD = 4x$,$\therefore BO = 2x$,$\therefore EO = x$,$\therefore E$为$BO$的中点.$\because AE\perp BO$,$\therefore AB = AO = 6cm$.$\because O$为$AC$的中点,$\therefore OA = OC = 6cm$.$\therefore AC = 12cm$.
2.如图,▱ABCD的对角线AC,BD相交于点O,AE = CF.
(1)求证:△BOE≌△DOF;
(2)若BD = EF,连接DE,BF,判断四边形EBFD的形状,并说明理由.
           
答案:
(1)证明:$\because$四边形$ABCD$是平行四边形,$\therefore OA = OC$,$OB = OD$,$\because AE = CF$,$\therefore OE = OF$,在$\triangle BOE$和$\triangle DOF$中,$\begin{cases}OB = OD,\\\angle BOE=\angle DOF,\\OE = OF,\end{cases}$ $\therefore \triangle BOE\cong\triangle DOF(SAS)$.
(2)解:四边形$EBFD$是矩形.理由如下:$\because OB = OD$,$OE = OF$,$\therefore$四边形$EBFD$是平行四边形.$\because BD = EF$,$\therefore$四边形$EBFD$是矩形.
3.如图,在矩形ABCD中,点M在DC上,AM = AB,且BN⊥AM,垂足为N.
(1)求证:△ABN≌△MAD;
(2)若AD = 2,AN = 4,求四边形BCMN的面积.
           
答案:
(1)证明:在矩形$ABCD$中,$\angle D = 90^{\circ}$,$DC// AB$,$\therefore \angle BAN=\angle AMD$.$\because BN\perp AM$,$\therefore \angle BNA = 90^{\circ}$.$\therefore \angle BNA=\angle D = 90^{\circ}$.在$\triangle ABN$和$\triangle MAD$中,$\begin{cases}\angle BAN=\angle AMD,\\\angle BNA=\angle D,\\BA = AM,\end{cases}$ $\therefore \triangle ABN\cong\triangle MAD(AAS)$.
(2)解:$\because \triangle ABN\cong\triangle MAD$,$\therefore BN = AD$.$\because AD = 2$,$\therefore BN = 2$.又$\because AN = 4$,$\therefore$在$Rt\triangle ABN$中,$AB=\sqrt{AN^{2}+BN^{2}}=\sqrt{4^{2}+2^{2}} = 2\sqrt{5}$.$S_{矩形ABCD}=2\times2\sqrt{5}=4\sqrt{5}$,$S_{\triangle ABN}=S_{\triangle MAD}=\frac{1}{2}\times2\times4 = 4$.$\therefore S_{四边形BCMN}=S_{矩形ABCD}-S_{\triangle ABN}-S_{\triangle MAD}=4\sqrt{5}-8$.
4.如图,AD和BC相交于点O,∠ABO = ∠DCO = 90°,OB = OC,点E,F分别是AO,DO的中点.
(1)求证:OE = OF;
(2)当∠A = 30°时,求证:四边形BECF是矩形.
          
答案:
(1)证明:在$\triangle AOB$与$\triangle DOC$中,$\begin{cases}\angle ABO=\angle DCO,\\OB = OC,\\\angle AOB=\angle DOC,\end{cases}$ $\therefore \triangle AOB\cong\triangle DOC(ASA)$.$\therefore AO = DO$.$\because$点$E$,$F$分别是$AO$,$DO$的中点,$\therefore OE=\frac{1}{2}OA$,$OF=\frac{1}{2}OD$.$\therefore OE = OF$.
(2)$\because OB = OC$,$OE = OF$,$\therefore$四边形$BECF$是平行四边形.$\because \angle A = 30^{\circ}$,$\therefore OB=\frac{1}{2}OA = OE$.$\therefore BC = EF$.$\therefore$四边形$BECF$是矩形.

查看更多完整答案,请扫码查看

关闭