1. 如图,在△ABC中,AB = 5,AC = 13,AD⊥AB交BC于点D,D为BC中点,求AD的长.

答案:
解:延长AD至点E,使得AD=ED,连接CE,易证△ADB≌△EDC(SAS),
∴∠E=∠BAD=90°,CE=AB=5,
∴在Rt△AEC中,AE = √(13² - 5²) = 12,
∴AD = 6.
∴∠E=∠BAD=90°,CE=AB=5,
∴在Rt△AEC中,AE = √(13² - 5²) = 12,
∴AD = 6.
2. 如图,在Rt△ABC中,AB = 9,BC = 6,∠B = 90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,求BN的长.

答案:
解:设BN=x,AN=ND=9 - x,BD = 1/2BC = 3,在Rt△BND中,x² + 3² = (9 - x)²,x = 4,
∴BN = 4.
∴BN = 4.
3. 如图,将一个矩形纸片ABCD沿EF折叠,使B和D重合,若AB = 3,BC = 9. 求:
(1)BE的长;
(2)EF的长.

(1)BE的长;
(2)EF的长.
答案:
(1)解:设BE=x,在Rt△BAE中,3² + (9 - x)² = x²,x = 5,BE = 5.
(2)∠BFE = ∠FED = ∠BEF,
∴BE = BF = 5,作EM⊥BC交BF于M点,
∴FM = 1,在Rt△EMF中,EF = √10.
(1)解:设BE=x,在Rt△BAE中,3² + (9 - x)² = x²,x = 5,BE = 5.
(2)∠BFE = ∠FED = ∠BEF,
∴BE = BF = 5,作EM⊥BC交BF于M点,
∴FM = 1,在Rt△EMF中,EF = √10.
4. 如图,在边长为4的正方形纸片ABCD中,点P在边AD上,点Q在边AB上,AQ = 3,连接DQ、CP,DQ与CP交于点H,将正方形纸片ABCD沿CP折叠,点D的对应点D₁恰好落在DQ上.
(1)求证:△CDP≌△DAQ;
(2)求D₁Q的长.

(1)求证:△CDP≌△DAQ;
(2)求D₁Q的长.
答案:
(1)证明:
∵四边形ABCD是正方形,
∴∠CDP = ∠DAQ = 90°,由折叠的性质得DH = D₁H,D₁H⊥CP,
∴∠CHD = ∠DCP + ∠CDH = 90°,又
∵∠CDP = ∠ADQ + ∠CDH = 90°,
∴∠DCP = ∠ADQ,在△CDP和△DAQ中,{∠DCP = ∠ADQ, CD = DA, ∠CDP = ∠DAQ},
∴△CDP≌△DAQ(ASA).
(2)解:由
(1)得△CDP≌△DAQ,
∴DP = AQ = 3,CP = DQ,在Rt△DAQ中,由勾股定理得DQ = √(AD² + AQ²) = √(3² + 4²) = 5,
∴CP = DQ = 5,由1/2DC·DP = 1/2DH·CP,得DH = DC·DP/CP = 4×3/5 = 12/5,
∴DD₁ = 2DH = 24/5,
∴D₁Q = DQ - DD₁ = 5 - 24/5 = 1/5.
(1)证明:
∵四边形ABCD是正方形,
∴∠CDP = ∠DAQ = 90°,由折叠的性质得DH = D₁H,D₁H⊥CP,
∴∠CHD = ∠DCP + ∠CDH = 90°,又
∵∠CDP = ∠ADQ + ∠CDH = 90°,
∴∠DCP = ∠ADQ,在△CDP和△DAQ中,{∠DCP = ∠ADQ, CD = DA, ∠CDP = ∠DAQ},
∴△CDP≌△DAQ(ASA).
(2)解:由
(1)得△CDP≌△DAQ,
∴DP = AQ = 3,CP = DQ,在Rt△DAQ中,由勾股定理得DQ = √(AD² + AQ²) = √(3² + 4²) = 5,
∴CP = DQ = 5,由1/2DC·DP = 1/2DH·CP,得DH = DC·DP/CP = 4×3/5 = 12/5,
∴DD₁ = 2DH = 24/5,
∴D₁Q = DQ - DD₁ = 5 - 24/5 = 1/5.
查看更多完整答案,请扫码查看