1.下列二次根式中,可以与$\sqrt{3}$合并的二次根式是 ( )
A.$\sqrt{12}$
B.$\sqrt{18}$
C.$\sqrt{24}$
D.$\sqrt{45}$
A.$\sqrt{12}$
B.$\sqrt{18}$
C.$\sqrt{24}$
D.$\sqrt{45}$
答案:
A
2.下列计算正确的是 ( )
A.$\sqrt{2}+\sqrt{3}=\sqrt{6}$
B.$2+\sqrt{2}=2\sqrt{2}$
C.$\sqrt{12}-\sqrt{10}=\sqrt{2}$
D.$3\sqrt{2}-\sqrt{2}=2\sqrt{2}$
A.$\sqrt{2}+\sqrt{3}=\sqrt{6}$
B.$2+\sqrt{2}=2\sqrt{2}$
C.$\sqrt{12}-\sqrt{10}=\sqrt{2}$
D.$3\sqrt{2}-\sqrt{2}=2\sqrt{2}$
答案:
D
3.化简$(\sqrt{3}-2)^{2025}\times(\sqrt{3}+2)^{2026}$的结果为 ( )
A.$-1$
B.$\sqrt{3}-2$
C.$\sqrt{3}+2$
D.$-\sqrt{3}-2$
A.$-1$
B.$\sqrt{3}-2$
C.$\sqrt{3}+2$
D.$-\sqrt{3}-2$
答案:
D
4.若$a = \sqrt{2}+1,b = \sqrt{2}-1$,则$\sqrt{ab}(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}})$的值为 ( )
A.2
B.$-2$
C.$\sqrt{2}$
D.$2\sqrt{2}$
A.2
B.$-2$
C.$\sqrt{2}$
D.$2\sqrt{2}$
答案:
A
5.若最简二次根式$\sqrt{1 - 2a}$与$\sqrt{7}$能够合并,则$a$的值为______.
答案:
-3
6.已知$k = \sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$,则与$k$最接近的整数为______.
答案:
3
7.已知$a$为$\sqrt{24}$的整数部分,$b$为$\sqrt{24}$的小数部分,则$a - b+\sqrt{6}=$______.
答案:
$8 - \sqrt{6}$
8.(10分)计算:
(1)$\sqrt{6}\times\sqrt{3}-\sqrt{8}$;
(2)$(\sqrt{2}-\sqrt{3})^{2}-\sqrt{5}(\sqrt{5}-\sqrt{30})$;
(1)$\sqrt{6}\times\sqrt{3}-\sqrt{8}$;
(2)$(\sqrt{2}-\sqrt{3})^{2}-\sqrt{5}(\sqrt{5}-\sqrt{30})$;
答案:
(1)解:原式$=3\sqrt{2}-2\sqrt{2}=\sqrt{2}$。
(2)解:原式$=2 - 2\sqrt{6}+3 - 5 + 5\sqrt{6}=3\sqrt{6}$
(1)解:原式$=3\sqrt{2}-2\sqrt{2}=\sqrt{2}$。
(2)解:原式$=2 - 2\sqrt{6}+3 - 5 + 5\sqrt{6}=3\sqrt{6}$
9.(9分)先化简,再求值:$(\frac{3x + y}{x^{2}-y^{2}}+\frac{2x}{y^{2}-x^{2}})\div\frac{2}{x^{2}y - xy^{2}}$,其中$x = \sqrt{3}+1,y=\sqrt{3}$.
答案:
解:原式$=(\frac{3x + y}{x^{2}-y^{2}}-\frac{2x}{x^{2}-y^{2}})\div\frac{2}{x^{2}y - xy^{2}}=\frac{3x + y - 2x}{(x - y)(x + y)}\cdot\frac{xy(x - y)}{2}=\frac{x + y}{(x - y)(x + y)}\cdot\frac{xy(x - y)}{2}=\frac{xy}{2}$,当$x = \sqrt{3}+1$,$y = \sqrt{3}$时,原式$=\frac{\sqrt{3}(\sqrt{3}+1)}{2}=\frac{3+\sqrt{3}}{2}$。
查看更多完整答案,请扫码查看