2025年假期冲冠黑龙江教育出版社八年级数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假期冲冠黑龙江教育出版社八年级数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
5.如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD= DE.
变式题组
(1)若点D是AC的中点,如图①所示,求证:AD= CE;
(2)若点D不是AC的中点,如图②所示,试判断AD与CE的数量关系,并证明你的结论;
(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.

变式题组
(1)若点D是AC的中点,如图①所示,求证:AD= CE;
(2)若点D不是AC的中点,如图②所示,试判断AD与CE的数量关系,并证明你的结论;
(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.
答案:
解:
(1) 证明:$\because \triangle ABC$是等边三角形,$\therefore \angle ABC=\angle ACB = 60^{\circ}$,$AB = AC = BC$,$\because D$为$AC$的中点,$\therefore \angle DBC = 30^{\circ}$,$AD = DC$,$\because BD = DE$,$\therefore \angle E=\angle DBC = 30^{\circ}$,$\because \angle ACB=\angle E+\angle CDE$,$\therefore \angle CDE = 30^{\circ}=\angle E$,$\therefore CD = CE$,$\because AD = DC$,$\therefore AD = CE$.
(2)$AD = CE$. 证明如下:过点$D$作$DF// BC$,交$AB$于点$F$,则$\angle ADF=\angle ACB = 60^{\circ}$,$\because \angle A = 60^{\circ}$,$\therefore \triangle AFD$是等边三角形,$\therefore AD = DF = AF$,$\angle AFD = 60^{\circ}$,$\therefore \angle BFD=\angle DCE = 180^{\circ}-60^{\circ}=120^{\circ}$,$\because BD = DE$,$\therefore \angle DBE=\angle E$,$\because DF// BC$,$\therefore \angle FDB=\angle DBE=\angle E$. 在$\triangle BFD$和$\triangle DCE$中,$\left\{\begin{array}{l} \angle FDB=\angle E,\\ \angle BFD=\angle DCE,\\ BD=DE,\end{array}\right.$ $\therefore \triangle BFD≌\triangle DCE$,$\therefore CE = DF = AD$,即$AD = CE$.
(3)
(2)中的结论仍成立. 证明如下:如图,过点$D$作$DP// BC$,交$AB$的延长线于点$P$,$\because \triangle ABC$是等边三角形,$\therefore \triangle APD$也是等边三角形,$\therefore AP = PD = AD$,$\angle APD=\angle ABC=\angle ACB=\angle PDC = 60^{\circ}$,$\therefore \angle DCE = 60^{\circ}$,$\because DB = DE$,
$\therefore \angle DBC=\angle DEC$,$\because DP// BC$,$\therefore \angle PDB=\angle CBD$,$\therefore \angle PDB=\angle DEC$. 在$\triangle BPD$和$\triangle DCE$中,$\left\{\begin{array}{l} \angle PDB=\angle DEC,\\ \angle P=\angle DCE = 60^{\circ},\\ DB=DE,\end{array}\right.$ $\therefore \triangle BPD≌\triangle DCE$,$\therefore PD = CE$,$\therefore AD = CE$.
解:
(1) 证明:$\because \triangle ABC$是等边三角形,$\therefore \angle ABC=\angle ACB = 60^{\circ}$,$AB = AC = BC$,$\because D$为$AC$的中点,$\therefore \angle DBC = 30^{\circ}$,$AD = DC$,$\because BD = DE$,$\therefore \angle E=\angle DBC = 30^{\circ}$,$\because \angle ACB=\angle E+\angle CDE$,$\therefore \angle CDE = 30^{\circ}=\angle E$,$\therefore CD = CE$,$\because AD = DC$,$\therefore AD = CE$.
(2)$AD = CE$. 证明如下:过点$D$作$DF// BC$,交$AB$于点$F$,则$\angle ADF=\angle ACB = 60^{\circ}$,$\because \angle A = 60^{\circ}$,$\therefore \triangle AFD$是等边三角形,$\therefore AD = DF = AF$,$\angle AFD = 60^{\circ}$,$\therefore \angle BFD=\angle DCE = 180^{\circ}-60^{\circ}=120^{\circ}$,$\because BD = DE$,$\therefore \angle DBE=\angle E$,$\because DF// BC$,$\therefore \angle FDB=\angle DBE=\angle E$. 在$\triangle BFD$和$\triangle DCE$中,$\left\{\begin{array}{l} \angle FDB=\angle E,\\ \angle BFD=\angle DCE,\\ BD=DE,\end{array}\right.$ $\therefore \triangle BFD≌\triangle DCE$,$\therefore CE = DF = AD$,即$AD = CE$.
(3)
(2)中的结论仍成立. 证明如下:如图,过点$D$作$DP// BC$,交$AB$的延长线于点$P$,$\because \triangle ABC$是等边三角形,$\therefore \triangle APD$也是等边三角形,$\therefore AP = PD = AD$,$\angle APD=\angle ABC=\angle ACB=\angle PDC = 60^{\circ}$,$\therefore \angle DCE = 60^{\circ}$,$\because DB = DE$,
$\therefore \angle DBC=\angle DEC$,$\because DP// BC$,$\therefore \angle PDB=\angle CBD$,$\therefore \angle PDB=\angle DEC$. 在$\triangle BPD$和$\triangle DCE$中,$\left\{\begin{array}{l} \angle PDB=\angle DEC,\\ \angle P=\angle DCE = 60^{\circ},\\ DB=DE,\end{array}\right.$ $\therefore \triangle BPD≌\triangle DCE$,$\therefore PD = CE$,$\therefore AD = CE$.
6.如图,在△ABC中,已知∠ACB= 2∠B,BC= 2AC,求证:∠A= 90°.

答案:
证明:过点$C$作$CD$平分$\angle ACB$交$AB$于点$D$,过点$D$作$DE\perp BC$于点$E$,则$\angle ACB = 2\angle DCE$。
$\because \angle ACB = 2\angle B$,
$\therefore \angle DCE = \angle B$,
$\therefore BD = CD$。
$\because DE\perp BC$,
$\therefore BC = 2CE$。
$\because BC = 2AC$,
$\therefore AC = EC$。
在$\triangle ACD$和$\triangle ECD$中,
$\left\{\begin{array}{l} AC = EC \\ \angle ACD = \angle ECD \\ CD = CD \end{array}\right.$,
$\therefore \triangle ACD≌\triangle ECD(SAS)$,
$\therefore \angle A = \angle DEC = 90^{\circ}$。
$\because \angle ACB = 2\angle B$,
$\therefore \angle DCE = \angle B$,
$\therefore BD = CD$。
$\because DE\perp BC$,
$\therefore BC = 2CE$。
$\because BC = 2AC$,
$\therefore AC = EC$。
在$\triangle ACD$和$\triangle ECD$中,
$\left\{\begin{array}{l} AC = EC \\ \angle ACD = \angle ECD \\ CD = CD \end{array}\right.$,
$\therefore \triangle ACD≌\triangle ECD(SAS)$,
$\therefore \angle A = \angle DEC = 90^{\circ}$。
查看更多完整答案,请扫码查看