2025年假期冲冠黑龙江教育出版社八年级数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假期冲冠黑龙江教育出版社八年级数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 如图,点 A,D,C,E 在同一条直线上,$AB// EF,AB= EF,∠B= ∠F,AE= 12,AC= 8$,则 CD 的长为 ( )

A.5.5
B.4
C.4.5
D.3
A.5.5
B.4
C.4.5
D.3
答案:
B
2. 如图,已知$AB= AD,∠BAE= ∠DAC$,要使$△ABC\cong △ADE$. 若以“SAS”为依据,则补充的条件是____.

答案:
$AC = AE$
3. 如图,$△ABC$是等边三角形,D,E 在直线 BC 上,$DB= EC$. 求证:$∠D= ∠E.$

答案:
证明:$\because \triangle ABC$是等边三角形,$\therefore AB = AC$,$\angle ABC = \angle ACB$,$\therefore \angle ABD = \angle ACE$,
在$\triangle ADB$和$\triangle AEC$中,
$\left\{\begin{array}{l} AB = AC \\ \angle ABD = \angle ACE \\ DB = EC \end{array}\right.$
$\therefore \triangle ADB \cong \triangle AEC(SAS)$,$\therefore \angle D = \angle E$。
在$\triangle ADB$和$\triangle AEC$中,
$\left\{\begin{array}{l} AB = AC \\ \angle ABD = \angle ACE \\ DB = EC \end{array}\right.$
$\therefore \triangle ADB \cong \triangle AEC(SAS)$,$\therefore \angle D = \angle E$。
4. 如图,点 C 在线段 AE 上,$BC// DE,AC= DE,BC= CE$. 延长 AB 分别交 CD,ED 于点 G,F.
(1)求证:$AB= CD;$
(2)若$∠ACB= 65^{\circ },∠DCE= 75^{\circ }$,求$∠FGC$的度数.

(1)求证:$AB= CD;$
(2)若$∠ACB= 65^{\circ },∠DCE= 75^{\circ }$,求$∠FGC$的度数.
答案:
解:
(1) 证明:$\because BC // DE$,$\therefore \angle ACB = \angle CED$。在$\triangle ABC$与$\triangle DCE$中,
$\left\{\begin{array}{l} AC = DE \\ \angle ACB = \angle DEC \\ BC = CE \end{array}\right.$,$\therefore \triangle ABC \cong \triangle DCE(SAS)$,
$\therefore AB = CD$。
(2) 解:$\because \triangle ABC \cong \triangle DCE$,$\therefore \angle A = \angle D$,$\angle ABC = \angle DCE = 75^{\circ}$。$\because \angle ACB = 65^{\circ}$,$\therefore \angle A = \angle D = 180^{\circ} - 75^{\circ} - 65^{\circ} = 40^{\circ}$,
$\therefore \angle FBC = \angle A + \angle ACB = 40^{\circ} + 65^{\circ} = 105^{\circ}$。$\because BC // DE$,$\therefore \angle DFB = \angle FBC = 105^{\circ}$。$\therefore \angle FGC = \angle D + \angle DFB = 40^{\circ} + 105^{\circ} = 145^{\circ}$。
(1) 证明:$\because BC // DE$,$\therefore \angle ACB = \angle CED$。在$\triangle ABC$与$\triangle DCE$中,
$\left\{\begin{array}{l} AC = DE \\ \angle ACB = \angle DEC \\ BC = CE \end{array}\right.$,$\therefore \triangle ABC \cong \triangle DCE(SAS)$,
$\therefore AB = CD$。
(2) 解:$\because \triangle ABC \cong \triangle DCE$,$\therefore \angle A = \angle D$,$\angle ABC = \angle DCE = 75^{\circ}$。$\because \angle ACB = 65^{\circ}$,$\therefore \angle A = \angle D = 180^{\circ} - 75^{\circ} - 65^{\circ} = 40^{\circ}$,
$\therefore \angle FBC = \angle A + \angle ACB = 40^{\circ} + 65^{\circ} = 105^{\circ}$。$\because BC // DE$,$\therefore \angle DFB = \angle FBC = 105^{\circ}$。$\therefore \angle FGC = \angle D + \angle DFB = 40^{\circ} + 105^{\circ} = 145^{\circ}$。
5. 如图,在正方形 ABCD 中,E,F 分别是边 AD,DC 上的点,且$AF⊥BE$. 求证:$AF= BE.$

答案:
证明:$\because$四边形$ABCD$是正方形,$\therefore AB = DA$,$\angle D = \angle EAB = 90^{\circ}$。$\therefore \angle FAD + \angle BAF = 90^{\circ}$。$\because BE \perp AF$,
$\therefore \angle BAF + \angle ABE = 90^{\circ}$。$\therefore \angle ABE = \angle DAF$。在$\triangle ABE$和$\triangle DAF$中,
$\left\{\begin{array}{l} \angle EAB = \angle D \\ AB = DA \\ \angle ABE = \angle DAF \end{array}\right.$,
$\therefore \triangle ABE \cong \triangle DAF(ASA)$。
$\therefore BE = AF$。
$\therefore \angle BAF + \angle ABE = 90^{\circ}$。$\therefore \angle ABE = \angle DAF$。在$\triangle ABE$和$\triangle DAF$中,
$\left\{\begin{array}{l} \angle EAB = \angle D \\ AB = DA \\ \angle ABE = \angle DAF \end{array}\right.$,
$\therefore \triangle ABE \cong \triangle DAF(ASA)$。
$\therefore BE = AF$。
查看更多完整答案,请扫码查看