2025年热搜题高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
10. [2024·哈尔滨三中周练]已知数列$\{a_n\}$是等差数列,$a_4 = 15$,$a_7 = 27$,则过点$P(3,a_3)$,$Q(5,a_5)$的直线斜率为(
A.4
B.$\frac{1}{4}$
C.$-4$
D.$-\frac{1}{4}$
A
)A.4
B.$\frac{1}{4}$
C.$-4$
D.$-\frac{1}{4}$
答案:
10.A 【解析】由数列{a_n}是等差数列,知a_n是关于n的“一次函数”,其图象是一条直线上的等间隔的点(n,a_n),因此过点P(3,$a_3),$Q(5,$a_5)$的直线斜率即过点(4,15),(7,27)的直线斜率,所以所求直线的斜率$k = \frac{27 - 15}{7 - 4} = 4.$
11. [2024·洛阳质检]已知等差数列$\{a_n\}$为递增数列,若$a_1^2 + a_{10}^2 = 101$,$a_1 + a_{10} = 11$,则数列$\{a_n\}$的公差$d =$(
A.1
B.2
C.9
D.10
A
)A.1
B.2
C.9
D.10
答案:
11.A 【解析】依题意,得$(a_1 + a_10)^2 - 2a_1a_10 = 121 - 2a_1a_10 = 101,$所以$a_1a_10 = 10.$因为$a_1 + a_10 = 11,$且{a_n}为递增数列,所以$a_1 = 1,$$a_10 = 10,$所以$d = \frac{a_10 - a_1}{10 - 1} = 1.$
12. (多选)已知等差数列$\{a_n\}$的公差是$d(d\gt0)$,下列说法中正确的有(
A.数列$\{a_n\}$是递增数列
B.数列$\{na_n\}$是递增数列
C.数列$\{\frac{a_n}{n}\}$是递增数列
D.数列$\{a_n + 3nd\}$是递增数列
AD
)A.数列$\{a_n\}$是递增数列
B.数列$\{na_n\}$是递增数列
C.数列$\{\frac{a_n}{n}\}$是递增数列
D.数列$\{a_n + 3nd\}$是递增数列
答案:
12.AD 【解析】对于A,因为等差数列{a_n}的公差为d,且d > 0,所以{a_n}是递增数列,故A正确.对于B,$n a_n = n a_1 + n(n - 1)d,$所以$(n + 1)a_{n + 1} - n a_n = (n + 1)[a_1 + n d] - n[a_1 + (n - 1)d] = 2n d + a_1 + d,$无法判断其与0的大小关系,故数列{n a_n}不一定是递增数列,故B不正确.对于C,$\frac{a_{n + 1}}{n + 1} - \frac{a_n}{n} = \frac{a_1 + (n - 1)d}{n} - \frac{a_1}{n} = \frac{d - a_1}{n(n + 1)},$无法判断其与0的大小关系,故数列${\frac{a_n}{n}}$不一定是递增数列,故C不正确.对于D,设b_n = a_n + 3n d,则$b_{n + 1} - b_n = a_{n + 1} - a_n + 3d = 4d > 0,$所以数列{a_n + 3n d}是递增数列,故D正确.故选AD.
13. [2024·盘锦调研]已知数列$\{a_n\}$为等差数列,且$a_1 + a_5 + a_9 = \pi$,则$\cos(a_2 + a_8) =$(
A.$-\frac{1}{2}$
B.$-\frac{\sqrt{2}}{2}$
C.$\frac{1}{2}$
D.$\frac{\sqrt{3}}{2}$
A
)A.$-\frac{1}{2}$
B.$-\frac{\sqrt{2}}{2}$
C.$\frac{1}{2}$
D.$\frac{\sqrt{3}}{2}$
答案:
13.A 【解析】由等差数列的性质知,$a_2 + a_8 = a_1 + a_9 = 2a_5,$所以$3a_5 = π,$得$a_5 = \frac{π}{3},$所以$cos(a_2 + a_8) = cos2a_5 = cos\frac{2π}{3} = -\frac{1}{2}.$
14. [2024·黄冈中学月考](多选)已知单调递增的等差数列$\{a_n\}$满足$a_1 + a_2 + a_3 + ·s + a_{101} = 0$,则下列各式一定成立的有(
A.$a_1 + a_{101} \gt 0$
B.$a_2 + a_{100} = 0$
C.$a_3 + a_{100} \leq 0$
D.$a_{51} = 0$
BD
)A.$a_1 + a_{101} \gt 0$
B.$a_2 + a_{100} = 0$
C.$a_3 + a_{100} \leq 0$
D.$a_{51} = 0$
答案:
14.BD 【解析】设等差数列{a_n}的公差为d,易知d > 0,因为等差数列{a_n}满足$a_1 + a_2 + a_3 + … + a_101 = 0,$且$a_1 + a_101 = a_2 + a_100 = … = a_50 + a_52 = 2a_51,$所以$a_1 + a_2 + a_3 + … + a_101 = (a_1 + a_101) + (a_2 + a_100) + … + (a_50 + a_52) + a_51 = 101a_51 = 0,$所以$a_51 = 0,$$a_1 + a_100 = a_2 + a_51 = 0,$故B_D正确,A错误.又因为$a_51 = a_1 + 50d = 0,$所以$a_1 = -50d,$所以$a_3 + a_100 = (a_1 + 2d) + (a_1 + 99d) = 2a_1 + 101d = 2 × (-50d) + 101d = d > 0,$故C错误.故选BD.
15. 在等差数列$\{a_n\}$中,$a_1 = 0$,公差$d\neq0$,若$a_1 + a_2 + ·s + a_7 = a_k$,则$k$的值为(
A.10
B.20
C.22
D.23
C
)A.10
B.20
C.22
D.23
答案:
15.C 【解析】因为{a_n}为等差数列,$a_1 + a_2 + … + a_7 = a_4,$所以$0 + (k - 1)d = 7a_4 = 21d.$又d ≠ 0,所以k = 22.
16. 已知数列$\{a_n\}$是等差数列。若$a_4 + a_7 + a_{10} = 17$,$a_4 + a_5 + a_6 + ·s + a_{12} + a_{13} + a_{14} = 77$,且$a_k = 13$,则$k = $
18
$$。
答案:
16.18 【解析】设数列{a_n}的公差为d,因为$a_4 + a_7 + a_10 = 3a_7 = 17,$所以$a_7 = \frac{17}{3}.$因为$a_4 + a_5 + a_6 + … + a_12 + a_13 + a_14 = 11a_9 = 77,$所以$a_9 = 7,$所以$d = \frac{2}{3}.$所以$a_k - a_9 = (k - 9)d,$即$13 - 7 = (k - 9) × \frac{2}{3},$解得k = 18.
1. [2024·深圳模拟]在等差数列$\{a_n\}$中,若$a_1 + a_2 + ·s + a_5 = 30$,$a_6 + a_7 + ·s + a_{10} = 80$,则$a_{11} + a_{12} + ·s + a_{15} =$(
A.110
B.120
C.130
D.140
C
)A.110
B.120
C.130
D.140
答案:
1.C 【解析】设公差为d,则$(a_6 + a_7 + … + a_10) - (a_1 + a_2 + … + a_5) = (a_6 - a_1) + (a_7 - a_2) + … + (a_10 - a_5) = 5d + 5d + 5d + 5d + 5d = 25d = 80 - 30 = 50,$所以d = 2,所以$a_11 + a_12 + … + a_15 = (a_6 + 5d) + (a_7 + 5d) + … + (a_10 + 5d) = (a_6 + a_7 + … + a_10) + 25d = 80 + 25 × 2 = 130.$
2. [2024·青岛一中期中]已知四个数构成等差数列,它们的和为28,中间两项的积为40,则这四个数依次为
-2,4,10,16或16,10,4,-2
。
答案:
2.-2,4,10,16或16,10,4,-2 【解析】设这四个数分别为a - 3d,a - d,a + d,a + 3d,则$\begin{cases} a - 3d + a - d + a + d + a + 3d = 28 \\ (a - d)(a + d) = 40 \end{cases}$
解得$\begin{cases} a = 7 \\ d = 3 \end{cases}$或$\begin{cases} a = 7 \\ d = -3 \end{cases}$
所以这四个数依次为-2,4,10,16或16,10,4,-2.
解得$\begin{cases} a = 7 \\ d = 3 \end{cases}$或$\begin{cases} a = 7 \\ d = -3 \end{cases}$
所以这四个数依次为-2,4,10,16或16,10,4,-2.
3. 已知数列$\{a_n\}$满足$a_1 = 0$,$a_{n + 1} = a_n + 2\sqrt{a_n + 1} + 1$,则$a_{13} =$(
A.143
B.156
C.168
D.195
C
)A.143
B.156
C.168
D.195
答案:
3.C 【解析】由$a_{n + 1} = a_n + 2\sqrt{a_n + 1} + 1,$得$a_{n + 1} + 1 = (\sqrt{a_n + 1} + 1)^2,$所以$\sqrt{a_{n + 1} + 1} - \sqrt{a_n + 1} = 1.$又$a_1 = 0,$所以数列${\sqrt{a_n + 1}}$是以1为首项,1为公差的等差数列,则$\sqrt{a_n + 1} = n,$所以$a_n = n^2 - 1,$所以$a_{13} = 13^2 - 1 = 168.$
4. [2024·黄山一中月考]在数列$\{a_n\}$中,$a_1 = 1$,$a_2 = \frac{1}{2}$,且$\frac{2}{a_{n + 1}} = \frac{1}{a_n} + \frac{1}{a_{n + 2}}(n\in\mathbf{N}^*)$,则该数列的通项公式为$a_n = $
\frac{1}{n}
$$。
答案:
$4.\frac{1}{n} 【$解析】由$\frac{2}{a_{n + 1}} = \frac{1}{a_n} + \frac{1}{a_{n + 2}},$知${\frac{1}{a_n}}$为等差数列,公差为$\frac{1}{a_2} - \frac{1}{a_1} = \frac{1}{2} - 1 = -\frac{1}{2},$所以$\frac{1}{a_n} = \frac{1}{a_1} + (n - 1) × 1 = n,$
所以$a_n = \frac{1}{n}$
所以$a_n = \frac{1}{n}$
5. [2024·南阳一中月考]已知数列$\{a_n\}$满足$a_1 = 1$,$a_{n + 1} = 3a_n + 3^n$,则$a_n = $
n × 3^{n - 1}
$$。
答案:
$5.n × 3^{n - 1} 【$解析】由$a_{n + 1} = 3a_n + 3^n,$可得$\frac{a_{n + 1}}{3^{n + 1}} = \frac{3a_n}{3^{n + 1}} + \frac{3^n}{3^{n + 1}},$
即$\frac{a_{n + 1}}{3^{n + 1}} - \frac{a_n}{3^n} = \frac{1}{3},$所以${\frac{a_n}{3^n}}$是公差为$\frac{1}{3}$的等差数列,所以$\frac{a_n}{3^n} = \frac{a_1}{3^1} + (n - 1) × \frac{1}{3},$所以$a_n = n × 3^{n - 1}.$
即$\frac{a_{n + 1}}{3^{n + 1}} - \frac{a_n}{3^n} = \frac{1}{3},$所以${\frac{a_n}{3^n}}$是公差为$\frac{1}{3}$的等差数列,所以$\frac{a_n}{3^n} = \frac{a_1}{3^1} + (n - 1) × \frac{1}{3},$所以$a_n = n × 3^{n - 1}.$
6. [2024·济南调考]已知数列$\{a_n\}$满足:$a_{n + 1} + a_n = 4n - 3(n\in\mathbf{N}^*)$,且$a_1 = 2$,则数列$\{a_n\}$的通项公式为$a_n = $$$。
答案:
$6.\begin{cases} 2n,$n为奇数 \\ 2n - 5,n为偶数$ \end{cases} 【$解析】由$a_{n + 1} + a_n = 4n - 3,$得$a_{n - 1} = 4n - 7(n ≥ 2).$由等差数列的定义知,数列{a_n}的奇数项与偶数项分别构成以4为公差的等差数列.
由$a_1 = 2$及$a_2 + a_1 = 4 - 3 = 1,$知$a_2 = -1,$
所以当n为奇数时,$a_n = a_1 + (\frac{n + 1}{2} - 1) × 4 = 2n;$
当n为偶数时,$a_n = a_2 + (\frac{n}{2} - 1) × 4 = 2n - 5.$
综上所述,数列{a_n}的通项公式为$a_n = \begin{cases} 2n,$n为奇数 \\ 2n - 5,n为偶数$ \end{cases}.$
由$a_1 = 2$及$a_2 + a_1 = 4 - 3 = 1,$知$a_2 = -1,$
所以当n为奇数时,$a_n = a_1 + (\frac{n + 1}{2} - 1) × 4 = 2n;$
当n为偶数时,$a_n = a_2 + (\frac{n}{2} - 1) × 4 = 2n - 5.$
综上所述,数列{a_n}的通项公式为$a_n = \begin{cases} 2n,$n为奇数 \\ 2n - 5,n为偶数$ \end{cases}.$
查看更多完整答案,请扫码查看