2025年热搜题高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. [2024·东北三校联考](多选)以下运算正确的有 (
A.$\left(\dfrac{1}{x}\right)'=\dfrac{1}{x^{2}}$
B.$(\sin x)'=\cos x$
C.$(2^{x})'=2^{x}\ln 2$
D.$(\lg x)'=-\dfrac{1}{x\ln 10}$
BC
)A.$\left(\dfrac{1}{x}\right)'=\dfrac{1}{x^{2}}$
B.$(\sin x)'=\cos x$
C.$(2^{x})'=2^{x}\ln 2$
D.$(\lg x)'=-\dfrac{1}{x\ln 10}$
答案:
1.BC 【解析】对于A,因为$(\frac{1}{x})' = -\frac{1}{x^{2}}$,所以 A不正确;对于B,因为$(\sin x)' = \cos x$,所以 B正确;对于 C,因为$(2^{x})' = 2^{x}\ln 2$,所以 C正确;对于D,因为$(\lg x)' = \frac{1}{x\ln 10}$,所以 D不正确. 故选 BC.
2. [2024·湖北四校联考]已知函数$f(x)=\log_{a}x(a>0,且a\neq 1)$,若$f'(1)=1$,则$a=$ (
A.$\mathrm{e}$
B.$\dfrac{1}{\mathrm{e}}$
C.$\dfrac{1}{\mathrm{e}^{2}}$
D.$\dfrac{1}{2}$
A
)A.$\mathrm{e}$
B.$\dfrac{1}{\mathrm{e}}$
C.$\dfrac{1}{\mathrm{e}^{2}}$
D.$\dfrac{1}{2}$
答案:
2.A 【解析】因为$f(x) = \log_{a}x$,所以$f'(x) = \frac{1}{x\ln a}$.又因为$f'(1) = 1$,所以$\frac{1}{\ln a} = 1$,所以$a = e$. 故选 A.
3. [2024·泰安一中月考]设$f_{0}(x)=\sin x$,$f_{1}(x)=f_{0}'(x)$,$f_{2}(x)=f_{1}'(x)$,$·s$,$f_{n+1}(x)=f_{n}'(x)$,$n\in \mathbf{N}$,则$f_{\number{2024}}(x)=$ (
A.$\sin x$
B.$-\sin x$
C.$\cos x$
D.$-\cos x$
A
)A.$\sin x$
B.$-\sin x$
C.$\cos x$
D.$-\cos x$
答案:
3.A 【解析】$f_{0}(x) = \sin x$,$f_{1}(x) = f_{0}'(x) = (\sin x)' = \cos x$,$f_{2}(x) = f_{1}'(x) = (\cos x)' = -\sin x$,$f_{3}(x) = f_{2}'(x) = (-\sin x)' = -\cos x$,$f_{4}(x) = f_{3}'(x) = (-\cos x)' = \sin x$. 故$f_{2024}(x) = f_{0}(x) = \sin x$. 故选 A.
4. 已知函数$f(x)=\begin{cases}x^{3},x<0,\\\ln x,0<x<1,\end{cases}$ 若$f'(a)=12$,则实数$a$的值为 ______ .
答案:
4.$\frac{1}{12}$或$-2$ 【解析】$f'(x) = \begin{cases}3x^{2},x < 0, \frac{1}{x},0 < x < 1.\end{cases}$若$f'(a) = 12$,则$\begin{cases}0 < a < 1, \frac{1}{a} = 12\end{cases}$或$\begin{cases}a < 0, \\3a^{2} = 12,\end{cases}$解得$a = \frac{1}{12}$或$a = -2$.
5. [2024·湖北鄂南高中周练]求下列函数的导函数.
(1)$y=x\sqrt{x}$;
(2)$y=\sqrt[5]{x^{3}}$;
(3)$y=\log_{2}x^{2}-\log_{2}x$;
(4)$y=-2\sin \dfrac{x}{2}\left(1-2\cos^{2}\dfrac{x}{4}\right)$.
(1)$y=x\sqrt{x}$;
(2)$y=\sqrt[5]{x^{3}}$;
(3)$y=\log_{2}x^{2}-\log_{2}x$;
(4)$y=-2\sin \dfrac{x}{2}\left(1-2\cos^{2}\dfrac{x}{4}\right)$.
答案:
5.
(1)$y' = (x\sqrt{x})' = (x^{\frac{3}{2}})' = \frac{3}{2}x^{\frac{3}{2}-1} = \frac{3}{2}\sqrt{x}$.
(2)$y' = (\sqrt[5]{x^{3}})' = (x^{\frac{3}{5}})' = \frac{3}{5}x^{\frac{3}{5}-1} = \frac{3}{5}x^{-\frac{2}{5}} = \frac{3}{5\sqrt[5]{x^{2}}}$.
(3)因为$y = \log_{2}x^{2} - \log_{2}x = \log_{2}x$,所以$y' = (\log_{2}x)' = \frac{1}{x\ln 2}$.
(4)因为$y = -2\sin\frac{x}{2}(1 - 2\cos^{2}\frac{x}{4}) = 2\sin\frac{x}{2}(2\cos^{2}\frac{x}{4} - 1) = 2\sin\frac{x}{2}\cos\frac{x}{2} = \sin x$,所以$y' = (\sin x)' = \cos x$.
(1)$y' = (x\sqrt{x})' = (x^{\frac{3}{2}})' = \frac{3}{2}x^{\frac{3}{2}-1} = \frac{3}{2}\sqrt{x}$.
(2)$y' = (\sqrt[5]{x^{3}})' = (x^{\frac{3}{5}})' = \frac{3}{5}x^{\frac{3}{5}-1} = \frac{3}{5}x^{-\frac{2}{5}} = \frac{3}{5\sqrt[5]{x^{2}}}$.
(3)因为$y = \log_{2}x^{2} - \log_{2}x = \log_{2}x$,所以$y' = (\log_{2}x)' = \frac{1}{x\ln 2}$.
(4)因为$y = -2\sin\frac{x}{2}(1 - 2\cos^{2}\frac{x}{4}) = 2\sin\frac{x}{2}(2\cos^{2}\frac{x}{4} - 1) = 2\sin\frac{x}{2}\cos\frac{x}{2} = \sin x$,所以$y' = (\sin x)' = \cos x$.
6. 曲线$f(x)=\dfrac{1}{x}$在点$P$处的切线的倾斜角为$\dfrac{3\pi}{4}$,则点$P$的坐标为 (
A.$(1,1)$
B.$(-1,-1)$
C.$\left(\dfrac{1}{2},2\right)$
D.$(1,1)$或$(-1,-1)$
D
)A.$(1,1)$
B.$(-1,-1)$
C.$\left(\dfrac{1}{2},2\right)$
D.$(1,1)$或$(-1,-1)$
答案:
6.D 【解析】切线的斜率$k = \tan\frac{3\pi}{4} = -1$,设切点 P的坐标为$(x_{0},y_{0})$,则$f'(x_{0}) = -1$. 因为$f'(x) = -\frac{1}{x^{2}}$,所以$-\frac{1}{x_{0}^{2}} = -1$,解得$x_{0} = 1$或$-1$,所以切点 P的坐标为$(1,1)$或$(-1,-1)$. 故选 D.
7. [2024·武汉外国语学校单元检测]已知点$P$在曲线$y=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$上,$\alpha$为曲线在点$P$处的切线的倾斜角,则$\alpha$的取值范围是(
A.$\left \lbrack\dfrac{3\pi}{4},\pi\right)$
B.$\left \lbrack0,\dfrac{3\pi}{4}\right \rbrack$
C.$\left \lbrack\dfrac{\pi}{4},\dfrac{3\pi}{4}\right \rbrack$
D.$\left \lbrack0,\dfrac{\pi}{4}\right \rbrack\cup\left \lbrack\dfrac{3\pi}{4},\pi\right)$
D
)A.$\left \lbrack\dfrac{3\pi}{4},\pi\right)$
B.$\left \lbrack0,\dfrac{3\pi}{4}\right \rbrack$
C.$\left \lbrack\dfrac{\pi}{4},\dfrac{3\pi}{4}\right \rbrack$
D.$\left \lbrack0,\dfrac{\pi}{4}\right \rbrack\cup\left \lbrack\dfrac{3\pi}{4},\pi\right)$
答案:
7.D 【解析】因为$y = 2\sin\frac{x}{2}\cos\frac{x}{2} = \sin x$,所以$y' = \cos x$.由题意,知曲线在点 P处的切线的斜率存在. 设$P(x_{0},y_{0})$,则切线的斜率$k = \tan\alpha = \cos x_{0}$,所以$-1 \leq \tan\alpha \leq 1$.因为$0 \leq \alpha < \pi$,所以$\alpha \in [0,\frac{\pi}{4}] \cup [\frac{3\pi}{4},\pi)$. 故选 D.
8. 已知函数$f(x)=\ln x$,则函数$g(x)=f(x)-f'(x)$的零点所在的区间是 (
A.$(0,1)$
B.$(1,2)$
C.$(2,3)$
D.$(3,4)$
B
)A.$(0,1)$
B.$(1,2)$
C.$(2,3)$
D.$(3,4)$
答案:
8.B 【解析】由$f(x) = \ln x$,得$f'(x) = \frac{1}{x}$,则$g(x) = f(x) - f'(x) = \ln x - \frac{1}{x}$.易知函数$g(x)$的定义域为$(0,+\infty)$,且函数$g(x)$在$(0,+\infty)$上为增函数.因为$g(1) = \ln 1 - 1 = -1 < 0$,$g(2) = \ln 2 - \frac{1}{2} = \ln 2 - \ln\sqrt{e} > 0$,所以函数$g(x)$在区间$(1,2)$上有唯一零点.
9. [2024·温州三中期中](多选)已知函数$f(x)$及其导数$f'(x)$,若存在$x_{0}$,使得$f(x_{0})=f'(x_{0})$,则称$x_{0}$是$f(x)$的一个“巧值点”。下列函数中,有“巧值点”的有 (
A.$f(x)=x^{2}$
B.$f(x)=\mathrm{e}^{-x}$
C.$f(x)=\ln x$
D.$f(x)=\dfrac{1}{x}$
ACD
)A.$f(x)=x^{2}$
B.$f(x)=\mathrm{e}^{-x}$
C.$f(x)=\ln x$
D.$f(x)=\dfrac{1}{x}$
答案:
9.ACD 【解析】在 A中,若$f(x) = x^{2}$,则$f'(x) = 2x$,则$x^{2} = 2x$,这个方程显然有解,故 A符合要求;在 B中,若$f(x) = e^{-x}$,则$f'(x) = [(\frac{1}{e})^{x}]' = (\frac{1}{e})^{x}\ln\frac{1}{e} = -e^{-x}$,即$e^{-x} = -e^{-x}$,此方程无解,故 B不符合要求;在 C中,若$f(x) = \ln x$,则$f'(x) = \frac{1}{x}$,由$\ln x = \frac{1}{x}$,数形结合可知该方程存在实数解,故 C符合要求;在 D中,若$f(x) = \frac{1}{x}$,则$f'(x) = -\frac{1}{x^{2}}$,由$-\frac{1}{x} = \frac{1}{x^{2}}$,可得$x = -1$,故 D符合要求. 故选 ACD.
10. [2024·惠州一中周练]过曲线$y=\cos x$上一点$P\left(\dfrac{\pi}{3},\dfrac{1}{2}\right)$且与曲线在点$P$处的切线垂直的直线的方程为
$2x - \sqrt{3}y - \frac{2\pi}{3} - \frac{\sqrt{3}}{2} = 0$
.
答案:
10.$2x - \sqrt{3}y - \frac{2\pi}{3} - \frac{\sqrt{3}}{2} = 0$ 【解析】因为$y = \cos x$,所以$y' = -\sin x$,曲线在点$P(\frac{\pi}{3},\frac{1}{2})$处的切线斜率是$y'|_{x = \frac{\pi}{3}} = -\sin\frac{\pi}{3} = -\frac{\sqrt{3}}{2}$,所以过点 P且与曲线在点 P处的切线垂直的直线的斜率为$\frac{2\sqrt{3}}{3}$,所以所求直线方程为$y - \frac{1}{2} = \frac{2\sqrt{3}}{3}(x - \frac{\pi}{3})$,即$2x - \sqrt{3}y - \frac{2\pi}{3} - \frac{\sqrt{3}}{2} = 0$.
11. [2024·徐州一中月考]若曲线$y=x^{-\frac{1}{2}}$在点$(m,m^{-\frac{1}{2}})$处的切线与两个坐标轴围成的三角形的面积为$18$,则$m=$
$64$
$$.
答案:
11.64 【解析】因为$y' = -\frac{1}{2}x^{-\frac{3}{2}}$,所以曲线$y = x^{-\frac{1}{2}}$在点$(m,m^{-\frac{1}{2}})$处的切线方程为$y - m^{-\frac{1}{2}} = -\frac{1}{2} · m^{-\frac{3}{2}}(x - m)$,令$x = 0$,得$y = \frac{3}{2}m^{-\frac{1}{2}}$,令$y = 0$,得$x = 3m$.由题意可得,$\frac{1}{2} × \frac{3}{2}m^{-\frac{1}{2}} × 3m = 18$,解得$m = 64$.
12. [2024·兰州一中月考]已知$P$为曲线$y=\ln x$上的一动点,$Q$为直线$y=x+1$上的一动点,则$|PQ|$的最小值为
$\sqrt{2}$
.
答案:
12.$\sqrt{2}$ 【解析】如图,当直线$l$与曲线$y = \ln x$相切且与直线$y = x + 1$平行时,切点到直线$y = x + 1$的距离即为$|PQ|$的最小值.易知$(\ln x)' = \frac{1}{x}$,令$\frac{1}{x} = 1$,得$x = 1$,故此时点 P的坐标为$(1,0)$,所以$|PQ|$的最小值为$\sqrt{2}$.
12.$\sqrt{2}$ 【解析】如图,当直线$l$与曲线$y = \ln x$相切且与直线$y = x + 1$平行时,切点到直线$y = x + 1$的距离即为$|PQ|$的最小值.易知$(\ln x)' = \frac{1}{x}$,令$\frac{1}{x} = 1$,得$x = 1$,故此时点 P的坐标为$(1,0)$,所以$|PQ|$的最小值为$\sqrt{2}$.
查看更多完整答案,请扫码查看