2025年热搜题高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
7. [2024·雅安中学周练]已知数列$\{ a_{n}\} $是等比数列,其中$a_{1},a_{8}$是关于$x$的方程$x^{2}-2x\sin \alpha -\sqrt{3}\sin \alpha =0$的两根,且$(a_{1}+a_{8})^{2}=2a_{3}a_{6}+6$,则锐角$\alpha $的值为(
A.$\dfrac{\pi}{6}$
B.$\dfrac{\pi}{4}$
C.$\dfrac{\pi}{3}$
D.$\dfrac{5\pi}{12}$
C
)A.$\dfrac{\pi}{6}$
B.$\dfrac{\pi}{4}$
C.$\dfrac{\pi}{3}$
D.$\dfrac{5\pi}{12}$
答案:
7.C 【解析】因为$a_{1}$,$a_{8}$是关于$x$的方程$x^{2} - 2x\sin\alpha - \sqrt{3}\sin\alpha = 0$的两根,所以$a_{1}a_{8} = - \sqrt{3}\sin\alpha$,$a_{1} + a_{8} =$ $2\sin\alpha$.因为$(a_{1} + a_{8})^{2} = 2a_{3}a_{6} + 6 = 2a_{1}a_{8} + 6$,所以$4\sin^{2}\alpha = 2 × ( - \sqrt{3}\sin\alpha) + 6$,即$2\sin^{2}\alpha + \sqrt{3}\sin\alpha - 3 = 0$.又$\alpha$为锐角,所以$\sin\alpha = \frac{\sqrt{3}}{2}$,所以$\alpha = \frac{\pi}{3}$.故选C.
8. [2024·杭州学军中学月考]已知数列$\{ a_{n}\} $的前$n$项和为$S_{n}$,且$a_{n}=(-1)^{n}(2n-1)\cos \dfrac{n\pi}{2}+1$,则$S_{60}=$(
A.$-30$
B.$-60$
C.$90$
D.$120$
D
)A.$-30$
B.$-60$
C.$90$
D.$120$
答案:
8.D 【解析】由$a_{n} = ( - 1)^{n}(2n - 1)\cos\frac{n\pi}{2} + 1$,得$S_{60} =$
$( - \cos\frac{\pi}{2} + 1) + (3\cos\frac{2\pi}{2} + 1) + ( - 5\cos\frac{3\pi}{2} + 1) +$
$(7\cos\frac{4\pi}{2} + 1) + ·s + (119\cos\frac{60\pi}{2} + 1) = (0 + 1) + ( - 3 +$
$1) + (0 + 1) + (7 + 1) + ·s + (119 + 1) = 1 × 60 + 4 × 15 = 120$.故
选D.
$( - \cos\frac{\pi}{2} + 1) + (3\cos\frac{2\pi}{2} + 1) + ( - 5\cos\frac{3\pi}{2} + 1) +$
$(7\cos\frac{4\pi}{2} + 1) + ·s + (119\cos\frac{60\pi}{2} + 1) = (0 + 1) + ( - 3 +$
$1) + (0 + 1) + (7 + 1) + ·s + (119 + 1) = 1 × 60 + 4 × 15 = 120$.故
选D.
9. 已知数列$\{ a_{n}\} $是各项均为正数的等比数列,点$M(2,\log_{2}a_{2})$,$N(5,\log_{2}a_{5})$都在直线$y=x-1$上,则数列$\{ a_{n}\} $的前$n$项和$S_{n}=$
$2^{n} - 1$
.
答案:
9.$2^{n} - 1$ 【解析】由题意可得$\log_{2}a_{2} = 2 - 1 = 1$,$\log_{2}a_{5} = 5 -$ $1 = 4$,则$a_{2} = 2$,$a_{5} = 16$,数列$\{ a_{n}\}$的公比$q = \sqrt[3]{\frac{a_{5}}{a_{2}}} = \sqrt[3]{8} =$ $2$,数列$\{ a_{n}\}$的首项$a_{1} = \frac{a_{2}}{q} = \frac{2}{2} = 1$,前$n$项和$S_{n} =$ $\frac{1 × (1 - 2^{n})}{1 - 2} = 2^{n} - 1$.
10. 已知函数$f(x)=\begin{cases}2x-10,x\leqslant 7,\\\dfrac{1}{f(x-2)},x>7,\end{cases}$若$a_{n}=f(n)(n\in \mathbf{N}^{*})$,则数列$\{ a_{n}\} $前$50$项的和为 ______ .
答案:
10.$\frac{225}{4}$ 【解析】当$n \leqslant 7$时,$a_{n} = f(n) = 2n - 10$,所以$a_{6} =$ $f(6) = 2 × 6 - 10 = 2$,$a_{7} = f(7) = 2 × 7 - 10 = 4$.当$n > 7$
时,$a_{n} = f(n) = \frac{1}{f(n - 2)}$,所以$a_{8} = f(8) = \frac{1}{f(6)} = \frac{1}{2}$,
$a_{9} = f(9) = \frac{1}{f(7)} = \frac{1}{4}$,$a_{10} = f(10) = \frac{1}{f(8)} = \frac{1}{\frac{1}{2}} = 2$,
$a_{11} = f(11) = \frac{1}{f(9)} = \frac{1}{\frac{1}{4}} = 4$,$a_{12} = f(12) = \frac{1}{f(10)} =$
$f(8) = \frac{1}{2}$,$·s$,所以$n \geqslant 10$时,$a_{n} = f(n) = \frac{1}{f(n - 2)} =$
$f(n - 4)$.所以数列$\{ a_{n}\}$前$50$项的和为$S_{50} = (a_{1} +$
$a_{2} + ·s + a_{8}) + (a_{7} + a_{8} + ·s + a_{50}) = \lbrack( - 8) + ( - 6) + ·s +$
$2\rbrack + \lbrack(4 + \frac{1}{2} + \frac{1}{4} + 2) + ·s + (4 + \frac{1}{2} + \frac{1}{4} + 2)\rbrack =$
$\frac{6 × ( - 8 + 2)}{2} + 11 × (4 + \frac{1}{2} + \frac{1}{4} + 2) = \frac{225}{4}$.
时,$a_{n} = f(n) = \frac{1}{f(n - 2)}$,所以$a_{8} = f(8) = \frac{1}{f(6)} = \frac{1}{2}$,
$a_{9} = f(9) = \frac{1}{f(7)} = \frac{1}{4}$,$a_{10} = f(10) = \frac{1}{f(8)} = \frac{1}{\frac{1}{2}} = 2$,
$a_{11} = f(11) = \frac{1}{f(9)} = \frac{1}{\frac{1}{4}} = 4$,$a_{12} = f(12) = \frac{1}{f(10)} =$
$f(8) = \frac{1}{2}$,$·s$,所以$n \geqslant 10$时,$a_{n} = f(n) = \frac{1}{f(n - 2)} =$
$f(n - 4)$.所以数列$\{ a_{n}\}$前$50$项的和为$S_{50} = (a_{1} +$
$a_{2} + ·s + a_{8}) + (a_{7} + a_{8} + ·s + a_{50}) = \lbrack( - 8) + ( - 6) + ·s +$
$2\rbrack + \lbrack(4 + \frac{1}{2} + \frac{1}{4} + 2) + ·s + (4 + \frac{1}{2} + \frac{1}{4} + 2)\rbrack =$
$\frac{6 × ( - 8 + 2)}{2} + 11 × (4 + \frac{1}{2} + \frac{1}{4} + 2) = \frac{225}{4}$.
11. [2024·长沙雅礼中学月考]已知等比数列$\{ a_{n}\} $的公比$q>1$,且$a_{1}+a_{3}=20$,$a_{2}=8$.
(1)求$\{ a_{n}\} $的通项公式;
(2)设$b_{n}=\dfrac{n}{a_{n}}$,$S_{n}$为$\{ b_{n}\} $的前$n$项和,对任意正整数$n$,不等式$S_{n}+\dfrac{n}{2^{n+1}}>(-1)^{n}· a$恒成立,求实数$a$的取值范围.
(1)求$\{ a_{n}\} $的通项公式;
(2)设$b_{n}=\dfrac{n}{a_{n}}$,$S_{n}$为$\{ b_{n}\} $的前$n$项和,对任意正整数$n$,不等式$S_{n}+\dfrac{n}{2^{n+1}}>(-1)^{n}· a$恒成立,求实数$a$的取值范围.
答案:
11.
(1)设数列$\{ a_{n}\}$的公比为$q$,则$\begin{cases} a_{1}(1 + q^{2}) = 20, \\a_{1}q = 8, \end{cases}$
所以$2q^{2} - 5q + 2 = 0$,解得$q = 2$或$q = \frac{1}{2}$.
又因为$q > 1$,所以$q = 2$,$a_{1} = 4$,
所以数列$\{ a_{n}\}$的通项公式为$a_{n} = 2^{n + 1}$.
(2)$b_{n} = \frac{n}{2^{n + 1}}$,所以$S_{n} = \frac{1}{2^{2}} + \frac{2}{2^{3}} + \frac{3}{2^{4}} + ·s + \frac{n}{2^{n + 1}}$,①
$\frac{1}{2}S_{n} = \frac{1}{2^{3}} + \frac{2}{2^{4}} + ·s + \frac{n - 1}{2^{n + 1}} + \frac{n}{2^{n + 2}}$,②
①-②得$\frac{1}{2}S_{n} = \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + ·s + \frac{1}{2^{n + 1}} -$
$\frac{n}{2^{n + 2}}$,
所以$S_{n} = \frac{\frac{1}{2^{1}} + \frac{1}{2^{2}} + ·s + \frac{1}{2^{n}}}{} = \frac{\frac{\frac{1}{2}(1 - \frac{1}{2^{n}})}{}}{1 - \frac{1}{2}} =$
$1 - \frac{1}{2^{n}}$,
$\frac{n}{2^{n + 1}} = 1 - \frac{n + 2}{2^{n + 1}}$,
所以$( - 1)^{n} · a < 1 - \frac{1}{2^{n}}$对任意正整数$n$恒成立,
设$f(n) = 1 - \frac{1}{2^{n}}$,易知$f(n)$在$(0, + \infty)$上单调递增.
又$n \in \mathbf{N}^{*}$,所以当$n$为奇数时,$f(n)$的最小值为$\frac{1}{2}$,
由$- a < \frac{1}{2}$,得$a > - \frac{1}{2}$,
当$n$为偶数时,$f(n)$的最小值为$\frac{3}{4}$,所以$a < \frac{3}{4}$
综上所述,实数$a$的取值范围是$( - \frac{1}{2},\frac{3}{4})$.
(1)设数列$\{ a_{n}\}$的公比为$q$,则$\begin{cases} a_{1}(1 + q^{2}) = 20, \\a_{1}q = 8, \end{cases}$
所以$2q^{2} - 5q + 2 = 0$,解得$q = 2$或$q = \frac{1}{2}$.
又因为$q > 1$,所以$q = 2$,$a_{1} = 4$,
所以数列$\{ a_{n}\}$的通项公式为$a_{n} = 2^{n + 1}$.
(2)$b_{n} = \frac{n}{2^{n + 1}}$,所以$S_{n} = \frac{1}{2^{2}} + \frac{2}{2^{3}} + \frac{3}{2^{4}} + ·s + \frac{n}{2^{n + 1}}$,①
$\frac{1}{2}S_{n} = \frac{1}{2^{3}} + \frac{2}{2^{4}} + ·s + \frac{n - 1}{2^{n + 1}} + \frac{n}{2^{n + 2}}$,②
①-②得$\frac{1}{2}S_{n} = \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + ·s + \frac{1}{2^{n + 1}} -$
$\frac{n}{2^{n + 2}}$,
所以$S_{n} = \frac{\frac{1}{2^{1}} + \frac{1}{2^{2}} + ·s + \frac{1}{2^{n}}}{} = \frac{\frac{\frac{1}{2}(1 - \frac{1}{2^{n}})}{}}{1 - \frac{1}{2}} =$
$1 - \frac{1}{2^{n}}$,
$\frac{n}{2^{n + 1}} = 1 - \frac{n + 2}{2^{n + 1}}$,
所以$( - 1)^{n} · a < 1 - \frac{1}{2^{n}}$对任意正整数$n$恒成立,
设$f(n) = 1 - \frac{1}{2^{n}}$,易知$f(n)$在$(0, + \infty)$上单调递增.
又$n \in \mathbf{N}^{*}$,所以当$n$为奇数时,$f(n)$的最小值为$\frac{1}{2}$,
由$- a < \frac{1}{2}$,得$a > - \frac{1}{2}$,
当$n$为偶数时,$f(n)$的最小值为$\frac{3}{4}$,所以$a < \frac{3}{4}$
综上所述,实数$a$的取值范围是$( - \frac{1}{2},\frac{3}{4})$.
12. [2024·合肥调考]已知数列$\{ a_{n}\} $的首项为$2$,$S_{n}$为其前$n$项和,且$S_{n+1}=qS_{n}+2(q>0,n\in \mathbf{N}^{*})$.
(1)若$a_{4},a_{5},a_{4}+a_{5}$构成等差数列,求数列$\{ a_{n}\} $的通项公式;
(2)设双曲线$x^{2}-\dfrac{y^{2}}{a_{n}^{2}}=1$的离心率为$e_{n}$,且$e_{2}=3$,求$e_{1}^{2}+2e_{2}^{2}+3e_{3}^{2}+·s +ne_{n}^{2}$.
(1)若$a_{4},a_{5},a_{4}+a_{5}$构成等差数列,求数列$\{ a_{n}\} $的通项公式;
(2)设双曲线$x^{2}-\dfrac{y^{2}}{a_{n}^{2}}=1$的离心率为$e_{n}$,且$e_{2}=3$,求$e_{1}^{2}+2e_{2}^{2}+3e_{3}^{2}+·s +ne_{n}^{2}$.
答案:
12.
(1)因为$S_{n + 1} = qS_{n} + 2$,所以$S_{n + 2} = qS_{n + 1} + 2$,两式相减
得$a_{n + 2} = qa_{n + 1}$,所以数列$\{ a_{n}\}$是首项为$2$,公比为$q$的等
比数列.
由$a_{4}$,$a_{5}$,$a_{4} + a_{5}$构成等差数列,可得$2a_{5} = a_{4} + a_{4} + a_{5}$,
所以$a_{5} = 2a_{4}$,故$q = 2$.
所以$a_{n} = 2^{n}(n \in \mathbf{N}^{*})$.
(2)由
(1)可知,$a_{n} = 2q^{n - 1}$,所以双曲线$x^{2} - \frac{y^{2}}{a_{n}^{2}} = 1$的离
心率$e_{n} = \sqrt{1 + a_{n}^{2}} = \sqrt{1 + 4q^{2(n - 1)}}$.
由$e_{2} = \sqrt{1 + 4q^{2}} = 3$,得$q = \sqrt{2}$(负值舍去).
所以$e_{n} = \sqrt{1 + 2^{n + 1}}$,$e_{n}^{2} = 1 + 2^{n + 1}$.
所以$e_{1}^{2} + 2e_{2}^{2} + 3e_{3}^{2} + ·s + ne_{n}^{2} = (1 + 2^{2}) + 2 × (1 + 2^{3}) +$
$3 × (1 + 2^{4}) + ·s + n × (1 + 2^{n + 1}) = \frac{n(1 + n)}{2} + 1 × 2^{2} + 2 ×$
$2^{3} + ·s + n × 2^{n + 1}$,
记$T_{n} = 1 × 2^{2} + 2 × 2^{3} + 3 × 2^{4} + ·s + n × 2^{n + 1}$,①
则$2T_{n} = 1 × 2^{3} + 2 × 2^{4} + ·s + (n - 1) × 2^{n + 1} + n × 2^{n + 2}$,②
①-②,得$- T_{n} = 2^{2} + 2^{3} + 2^{4} + ·s + 2^{n + 1} - n × 2^{n + 2} =$
$\frac{2^{2}(1 - 2^{n})}{1 - 2} - n × 2^{n + 2} = 2^{n + 2} - 4 - n × 2^{n + 2} = (1 - n) ×$
$2^{n + 2} - 4$,所以$T_{n} = (n - 1) × 2^{n + 2} + 4$,
所以$e_{1}^{2} + 2e_{2}^{2} + ·s + ne_{n}^{2} = (n - 1) × 2^{n + 2} + 4 + \frac{n(n + 1)}{2} + 4$.
(1)因为$S_{n + 1} = qS_{n} + 2$,所以$S_{n + 2} = qS_{n + 1} + 2$,两式相减
得$a_{n + 2} = qa_{n + 1}$,所以数列$\{ a_{n}\}$是首项为$2$,公比为$q$的等
比数列.
由$a_{4}$,$a_{5}$,$a_{4} + a_{5}$构成等差数列,可得$2a_{5} = a_{4} + a_{4} + a_{5}$,
所以$a_{5} = 2a_{4}$,故$q = 2$.
所以$a_{n} = 2^{n}(n \in \mathbf{N}^{*})$.
(2)由
(1)可知,$a_{n} = 2q^{n - 1}$,所以双曲线$x^{2} - \frac{y^{2}}{a_{n}^{2}} = 1$的离
心率$e_{n} = \sqrt{1 + a_{n}^{2}} = \sqrt{1 + 4q^{2(n - 1)}}$.
由$e_{2} = \sqrt{1 + 4q^{2}} = 3$,得$q = \sqrt{2}$(负值舍去).
所以$e_{n} = \sqrt{1 + 2^{n + 1}}$,$e_{n}^{2} = 1 + 2^{n + 1}$.
所以$e_{1}^{2} + 2e_{2}^{2} + 3e_{3}^{2} + ·s + ne_{n}^{2} = (1 + 2^{2}) + 2 × (1 + 2^{3}) +$
$3 × (1 + 2^{4}) + ·s + n × (1 + 2^{n + 1}) = \frac{n(1 + n)}{2} + 1 × 2^{2} + 2 ×$
$2^{3} + ·s + n × 2^{n + 1}$,
记$T_{n} = 1 × 2^{2} + 2 × 2^{3} + 3 × 2^{4} + ·s + n × 2^{n + 1}$,①
则$2T_{n} = 1 × 2^{3} + 2 × 2^{4} + ·s + (n - 1) × 2^{n + 1} + n × 2^{n + 2}$,②
①-②,得$- T_{n} = 2^{2} + 2^{3} + 2^{4} + ·s + 2^{n + 1} - n × 2^{n + 2} =$
$\frac{2^{2}(1 - 2^{n})}{1 - 2} - n × 2^{n + 2} = 2^{n + 2} - 4 - n × 2^{n + 2} = (1 - n) ×$
$2^{n + 2} - 4$,所以$T_{n} = (n - 1) × 2^{n + 2} + 4$,
所以$e_{1}^{2} + 2e_{2}^{2} + ·s + ne_{n}^{2} = (n - 1) × 2^{n + 2} + 4 + \frac{n(n + 1)}{2} + 4$.
13. 某小区现有住房的面积为$a$平方米,在改造过程中政府决定每年拆除$b$平方米旧住房,同时按当年住房面积的$10\%$建设新住房,则$n$年后该小区的住房面积为(
A.$1.1^{n}a-nb$
B.$1.1^{n}a-10b(1.1^{n}-1)$
C.$n(1.1a-1)$
D.$(a-b)1.1^{n}$
B
)A.$1.1^{n}a-nb$
B.$1.1^{n}a-10b(1.1^{n}-1)$
C.$n(1.1a-1)$
D.$(a-b)1.1^{n}$
答案:
13.B 【解析】由题意,第一年的住房面积为$a_{1} = a · 1 · 1 - b$,
第二年的住房面积为$a_{2} = a_{1} · 1 · 1 - b$,$·s$,则$a_{n + 1} = a_{n} ·$ $1 · 1 - b$.令$a_{n + 1} + m = (a_{n} + m) · 1 · 1$,则$m = - 10b$,所以$\{ a_{n} - 10b\}$是首项为$a_{1} - 10b$,公比为$1.1$的等比数列,则$a_{n} - 10b = (a_{1} - 10b) × 1.1^{n - 1} = (a - 10b) × 1.1^{n - 1}$,所以$a_{n} = 1.1^{n}a - 10b(1.1^{n} - 1)$.故选B.
第二年的住房面积为$a_{2} = a_{1} · 1 · 1 - b$,$·s$,则$a_{n + 1} = a_{n} ·$ $1 · 1 - b$.令$a_{n + 1} + m = (a_{n} + m) · 1 · 1$,则$m = - 10b$,所以$\{ a_{n} - 10b\}$是首项为$a_{1} - 10b$,公比为$1.1$的等比数列,则$a_{n} - 10b = (a_{1} - 10b) × 1.1^{n - 1} = (a - 10b) × 1.1^{n - 1}$,所以$a_{n} = 1.1^{n}a - 10b(1.1^{n} - 1)$.故选B.
14. [2024·南昌模拟]某住宅小区计划植树不少于$100$棵,若第一天植$2$棵,以后每天植树的棵数是前一天的$2$倍,则需要的最少天数$n(n\in \mathbf{N}^{*})=$
6
.
答案:
14.6 【解析】设每天植树的棵数构成的数列
15. [2024·大同一中期中]某企业在第$1$年年初购买一台价值为$120$万元的设备$M$,$M$的价值在使用过程中逐年减少,从第$2$年到第$6$年,每年年初$M$的价值比上年年初减少$10$万元;从第$7$年开始,每年年初$M$的价值为上年年初的$75\%$,则第$n$年年初$M$的价值$a_{n}=$.
答案:
当$1 \leq n \leq 6$时,设备价值逐年减少10万元,构成首项$a_1 = 120$,公差$d = -10$的等差数列,通项公式为:
$a_n = a_1 + (n-1)d = 120 - 10(n-1) = 130 - 10n$。
当$n \geq 7$时,设备价值从第7年年初开始以每年75%的比例递减,此时需以第6年年初的价值为基础。第6年年初价值$a_6 = 130 - 10 × 6 = 70$万元,构成首项为70,公比$q = 0.75$的等比数列,通项公式为:
$a_n = a_6 · q^{n-6} = 70 × \left(\frac{3}{4}\right)^{n-7}$(注:指数为$n-7$是因为第7年对应等比数列的第1项)。
综上,第$n$年年初$M$的价值为:
$a_n = \begin{cases} 130 - 10n, & 1 \leq n \leq 6, \\70 × \left(\frac{3}{4}\right)^{n-7}, & n \geq 7 \end{cases}$
答案:$\begin{cases} 130 - 10n, & 1 \leq n \leq 6, \\ 70 × \left(\dfrac{3}{4}\right)^{n-7}, & n \geq 7 \end{cases}$
$a_n = a_1 + (n-1)d = 120 - 10(n-1) = 130 - 10n$。
当$n \geq 7$时,设备价值从第7年年初开始以每年75%的比例递减,此时需以第6年年初的价值为基础。第6年年初价值$a_6 = 130 - 10 × 6 = 70$万元,构成首项为70,公比$q = 0.75$的等比数列,通项公式为:
$a_n = a_6 · q^{n-6} = 70 × \left(\frac{3}{4}\right)^{n-7}$(注:指数为$n-7$是因为第7年对应等比数列的第1项)。
综上,第$n$年年初$M$的价值为:
$a_n = \begin{cases} 130 - 10n, & 1 \leq n \leq 6, \\70 × \left(\frac{3}{4}\right)^{n-7}, & n \geq 7 \end{cases}$
答案:$\begin{cases} 130 - 10n, & 1 \leq n \leq 6, \\ 70 × \left(\dfrac{3}{4}\right)^{n-7}, & n \geq 7 \end{cases}$
查看更多完整答案,请扫码查看