2025年热搜题高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年热搜题高中数学选择性必修第二册人教版》

1. [2024·黄冈中学月考]已知数列$\{ a_{n}\}$的前$ n $项和$ S_{n}=a^{n}-1$($ a $是不为零的常数),则数列$\{ a_{n}\}$(
B
)

A.一定是等差数列
B.可能是等差数列,也可能是等比数列
C.一定是等比数列
D.既不可能是等差数列,也不可能是等比数列
答案: 1.B 【解析】由$S_n=a^n - 1$,知当$a = 1$时,$S_n = 0$,此时数列$\{a_n\}$为等差数列$(a_n = 0)$。当$a \neq 1$时,$a_1 = S_1 = a - 1$,$a_n = S_n - S_{n - 1} = (a - 1)a^{n - 1}$,此时数列$\{a_n\}$是首项为$a - 1$,公比为$a$的等比数列.故选B.
2. [2024·许昌调考]在等比数列$\{ a_{n}\}$中,若$ a_{1}=1$,$ a_{4}=\frac{1}{8}$,则该数列的前10项和$ S_{10}=$(
B
)

A.$ 2-\frac{1}{2^{8}}$
B.$ 2-\frac{1}{2^{9}}$
C.$ 2-\frac{1}{2^{10}}$
D.$ 2-\frac{1}{2^{11}}$
答案: 2.B 【解析】设等比数列$\{a_n\}$的公比为$q$,由$a_1 = 1$,$a_4 = \frac{1}{8}$,得$q^3 = \frac{1}{8}$,解得$q = \frac{1}{2}$,于是$S_{10} = \frac{a_1(1 - q^{10})}{1 - q} = \frac{1 - (\frac{1}{2})^{10}}{1 - \frac{1}{2}} = 2 - \frac{1}{2^9}$.故选B.
3. [2024·北京四中月考]已知公比为$ q(q\neq 1) $的等比数列$\{ a_{n}\}$的前$ n $项和为$ S_{n}$,则数列$\left\{ \frac{1}{a_{n}}\right\}$的前$ n $项和为(
D
)

A.$\frac{q^{n}}{S_{n}}$
B.$\frac{S_{n}}{q^{n}}$
C.$\frac{1}{S_{n}q^{n-1}}$
D.$\frac{S_{n}}{a_{1}^{2}q^{n-1}}$
答案: 3.D 【解析】数列$\{\frac{1}{a_n}\}$仍为等比数列,且公比为$\frac{1}{q}$,所以数列$\{\frac{1}{a_n}\}$的前$n$项和$S_n' = \frac{\frac{1}{a_1}(1 - \frac{1}{q^n})}{1 - \frac{1}{q}} = \frac{a_1(q^n - 1)}{a_1^2q^{n - 1}(q - 1)} = \frac{S_n}{a_1^2q^{n - 1}}$.
4. [2024·邯郸一中月考]已知等比数列$\{ a_{n}\}$的前$ n $项和为$ S_{n}=t· 3^{n-2}-\frac{1}{3}$,则实数$ t $的值为
3
答案: 4.3 【解析】由$S_n = t · 3^{n - 2} - \frac{1}{3}$,得$S_n = \frac{1}{3}(\frac{t}{3} · 3^n - 1)$.因为当公比$q \neq 1$时,等比数列前$n$项和公式可化为$S_n = A(q^n - 1)$,所以$\frac{t}{3} = 1$,即$t = 3$.
5. [2024·衡水中学月考]已知等比数列$\{ a_{n}\}$的前$ n $项和为$ S_{n}$,$ S_{5}=2$,$ S_{10}=6$,则$ a_{16}+a_{17}+a_{18}+a_{19}+a_{20}=$(
C
)

A.8
B.12
C.16
D.24
答案: 5.C 【解析】设等比数列$\{a_n\}$的公比为$q$.因为$S_{10} = \frac{a_1(1 - q^{10})}{1 - q}$,$S_5 = \frac{a_1(1 - q^5)}{1 - q}$,所以$S_{10} - S_5 = q^5S_5$,所以$6 - 2 = 2q^5$,所以$q^5 = 2$,所以$a_{16} + a_{17} + a_{18} + a_{19} + a_{20} = a_1q^{15} + a_2q^{15} + a_3q^{15} + a_4q^{15} + a_5q^{15} = q^{15}(a_1 + a_2 + a_3 + a_4 + a_5) = q^{15}S_5 = 2^3 × 2 = 16$.
6. [2024·重庆巴蜀中学月考]在数列$\{ a_{n}\}$中,$ a_{1}=2$,$ a_{n}=2a_{n+1}(n\in \mathbf{N}^{*})$,则$ a_{1}a_{3}+a_{2}a_{4}+·s +a_{10}a_{12}=$(
D
)

A.$\frac{4}{3}× (4^{10}-1)$
B.$\frac{4}{3}× (4^{11}-1)$
C.$\frac{16}{3}× \left[1-\left(\frac{1}{4}\right)^{11}\right]$
D.$\frac{4}{3}× \left[1-\left(\frac{1}{4}\right)^{10}\right]$
答案: 6.D 【解析】因为$a_1 = 2$,$a_n = 2a_{n + 1}$,所以$\{a_n\}$是首项为2,公比为$\frac{1}{2}$的等比数列,所以$a_1a_3$,$a_2a_4$,$·s$,$a_{10}a_{12}$是公比为$\frac{1}{4}$的等比数列,首项$a_1a_3 = 2 × 2 × (\frac{1}{2})^2 = 1$,所以$a_1a_3 + a_2a_4 + ·s + a_{10}a_{12} = \frac{1 × [1 - (\frac{1}{4})^{10}]}{1 - \frac{1}{4}} = \frac{4}{3} × [1 - (\frac{1}{4})^{10}]$.故选D.
7. [2024·衡阳八中期中]已知$ S_{n}$是等比数列$\{ a_{n}\}$的前$ n $项和。若存在$ m\in \mathbf{N}^{*}$,满足$\frac{S_{2m}}{S_{m}}=9$,$\frac{a_{2m}}{a_{m}}=\frac{5m + 1}{m - 1}$,则数列$\{ a_{n}\}$的公比为(
B
)

A.$-2$
B.2
C.$-3$
D.3
答案: 7.B 【解析】设公比为$q$,若$q = 1$,则$\frac{S_{2m}}{S_m} = 2$,与题中条件矛盾,故$q \neq 1$.因为$\frac{S_{2m}}{S_m} = \frac{\frac{a_1(1 - q^{2m})}{1 - q}}{\frac{a_1(1 - q^m)}{1 - q}} = q^m + 1 = 9$,所以$q^m = 8$.因为$\frac{a_{2m}}{a_m} = \frac{a_1q^{2m - 1}}{a_1q^{m - 1}} = q^m = 8 = \frac{5m + 1}{m - 1}$,所以$m = 3$,所以$q^3 = 8$,所以$q = 2$.
8. [2024·哈尔滨三中期中]已知数列$\{ a_{n}+81\}$是公比为3的等比数列,若$ a_{1}=-78$,则数列$\{ |a_{n}|\}$的前100项和$ S_{100}=$(
C
)

A.$\frac{3^{101}-16\ 203}{2}$
B.$\frac{3^{100}-15\ 387}{2}$
C.$\frac{3^{101}-15\ 387}{2}$
D.$\frac{3^{100}-16\ 203}{2}$
答案: 8.C 【解析】因为$a_1 = -78$,所以$a_1 + 81 = 3$.又因为数列$\{a_n + 81\}$是公比为3的等比数列,所以$a_n + 81 = 3 × 3^{n - 1} = 3^n$,可得$a_n = 3^n - 81$.易得当$n \leq 4$时,$a_n \leq 0$,当$n \geq 5$时,$a_n > 0$,所以数列$\{|a_n|\}$的前100项和$S_{100} = |a_1| + |a_2| + |a_3| + |a_4| + a_5 + a_6 + ·s + a_{100} = 81 - 3 + 81 - 9 + 81 - 27 + 0 + (3^5 - 81) + (3^6 - 81) + ·s + (3^{100} - 81) = 204 + 3^5 × (1 - 3^{96}) ÷ (1 - 3) - 81 × 96 = \frac{3^{101} - 15387}{2}$.
9. [2024·昆明一中周练]已知在等比数列$\{ a_{n}\}$中,$ a_{1}=2$,公比$ q = 3$。若其前$ n $项和$ S_{n}\geqslant 80$,则$ n $的最小值为
4
答案: 9.4 【解析】由题意,得$S_n = \frac{2 × (1 - 3^n)}{1 - 3} \geq 80$,即$3^n \geq 81$,解得$n \geq 4$,所以$n$的最小值为4.
10. [2024·成都七中单元检测]设数列$\{ a_{n}\}$的前$ n $项和为$ S_{n}$,点$\left(n,\frac{S_{n}}{n}\right)(n\in \mathbf{N}^{*})$均在直线$ y = x+\frac{1}{2}$上。若$ b_{n}=3^{a_{n}+\frac{1}{2}}$,则数列$\{ b_{n}\}$的前$ n $项和$ T_{n}=$
$\frac{9^{n + 1} - 9}{8}$
$$。
答案: 10.$\frac{9^{n + 1} - 9}{8}$【解析】依题意,得$\frac{S_n}{n} = n + \frac{1}{2}$,即$S_n = n^2 + \frac{1}{2}n$.当$n \geq 2$时,$a_n = S_n - S_{n - 1} = (n^2 + \frac{1}{2}n) - [(n - 1)^2 + \frac{1}{2}(n - 1)] = 2n - \frac{1}{2}$;当$n = 1$时,$a_1 = S_1 = \frac{3}{2}$,符合$a_n = 2n - \frac{1}{2}(n \in N^*)$,则$b_n = 3^{a_n + \frac{1}{2}} = 3^{2n} = 9^n$,由$\frac{b_{n + 1}}{b_n} = \frac{3^{2(n + 1)}}{3^{2n}} = 9$,可知$\{b_n\}$为等比数列,且$b_1 = 3^{2 × 1 + \frac{1}{2}} = 3^2 = 9$,可知$\{b_n\}$为等比数列,故$T_n = \frac{9(1 - 9^n)}{1 - 9} = \frac{9^{n + 1} - 9}{8}$.
11. [2024·南宁二中周练]已知在递增的等比数列$\{ a_{n}\}$中,$ a_{2}=6$。若$ a_{1}+1$,$ a_{2}+2$,$ a_{3}$构成等差数列,则该数列的前6项和$ S_{6}=$(
B
)

A.93
B.189
C.$\frac{189}{16}$
D.378
答案: 11.B 【解析】设数列$\{a_n\}$的公比为$q$,由题意可知$q > 1$,且$2(a_2 + 2) = a_1 + 1 + a_3$,即$2 × (6 + 2) = \frac{6}{q} + 1 + 6q$,整理可得$2q^2 - 5q + 2 = 0$,则$q = 2$或$q = \frac{1}{2}$(舍去).所以$a_1 = \frac{6}{2} = 3$,该数列的前6项和$S_6 = \frac{3 × (1 - 2^6)}{1 - 2} = 189$.故选B.
12. 已知数列$\{ a_{n}\}$是以2为首项,1为公差的等差数列,$\{ b_{n}\}$是以1为首项,2为公比的等比数列,则$ a_{b_{1}}+a_{b_{2}}+·s +a_{b_{10}}=$(
A
)

A.1 033
B.2 057
C.1 034
D.2 058
答案: 12.A 【解析】由已知,得$a_n = n + 1$,$b_n = 2^{n - 1}$,所以$a_{b_n} = 2^{n - 1} + 1$,因此$a_{b_1} + a_{b_2} + ·s + a_{b_{10}} = (2^0 + 1) + (2^1 + 1) + ·s + (2^9 + 1) = (2^0 + 2^1 + ·s + 2^9) + 10 = \frac{1 - 2^{10}}{1 - 2} + 10 = 1033$.
13. [2024·上海中学月考]已知公差不为0的等差数列$\{ a_{n}\}$的前$ n $项和为$ S_{n}$,$ S_{3}=a_{4}+6$,且$ a_{1}$,$ a_{4}$,$ a_{13}$构成等比数列,设$ b_{n}=2^{a_{n}}+1$,则$\{ b_{n}\}$的前$ n $项和$ T_{n}=$
$\frac{2^{2n + 3} - 8}{3} + n$
$$。
答案: 13.$\frac{2^{2n + 3} - 8}{3} + n$【解析】设等差数列$\{a_n\}$的公差为$d$,则$d \neq 0$,因为$S_3 = a_4 + 6$,所以$3a_1 + \frac{3 × 2d}{2} = a_1 + 3d + 6$,所以$a_1 = 3$.因为$a_1$,$a_4$,$a_{13}$构成等比数列,所以$a_1(a_1 + 12d) = (a_1 + 3d)^2$,解得$d = 2$或$0$(舍去),所以$a_n = 2n + 1$.故$b_n = 2^{2n + 1} + 1$,设$c_n = 2^{2n + 1}$,则$\frac{c_{n + 1}}{c_n} = \frac{2^{2(n + 1) + 1}}{2^{2n + 1}} = 4$,所以数列$\{c_n\}$是首项为8,公比为4的等比数列,所以$T_n = \frac{8(1 - 4^n)}{1 - 4} + n = \frac{2^{2n + 3} - 8}{3} + n$.

查看更多完整答案,请扫码查看

关闭