2025年热搜题高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年热搜题高中数学选择性必修第二册人教版》

12. [2024·西安铁一中学周练]在等比数列$ \{a_n\} $中,已知$ a_1 > 0 $,$ 8a_2 - a_5 = 0 $,则数列$ \{a_n\} $为(
A
)

A.递增数列
B.递减数列
C.常数列
D.摆动数列
答案: A[解析]由$8a_2 - a_5 = 0$,可知$\frac{a_5}{a_2} = q^3 = 8$,解得$q=2$.因为$a_1 > 0$,所以数列$\{ a_n \}$为递增数列.
13. [2024·成都外国语学校期中](多选)下列关于公比为$ q $的等比数列$ \{a_n\} $的叙述不正确的有 (
ABC
)

A.$ q > 1\Rightarrow \{a_n\} $为递增数列
B.$ \{a_n\} $为递增数列$ \Rightarrow q > 1 $
C.$ 0 < q < 1\Leftrightarrow \{a_n\} $为递减数列
D.$ q > 1\nRightarrow \{a_n\} $为递增数列且$ \{a_n\} $为递增数列$ \nRightarrow q > 1 $
答案: ABC[解析]若$a_1 = -2$,$q = 2 > 1$,则$\{ a_n \}$的各项为$-2$,$-4$,$-8$,$·s$,是递减数列,A不正确;若等比数列$\{ a_n \}$的各项为$-16$,$-8$,$-4$,$-2$,$·s$,是递增数列,则$q = \frac{1}{2} < 1$,B不正确,D正确;若$a_1 = -16$,$q = \frac{1}{2} \in (0,1)$,则$\{ a_n \}$的各项为$-16$,$-8$,$-4$,$·s$,显然是递增数列,C不正确.故选ABC.
14. [2024·济南外国语学校周练]在由正数组成的等比数列$ \{a_n\} $中,若$ a_4a_5a_6 = 3 $,则$ \log_3a_1 + \log_3a_2 + \log_3a_8 + \log_3a_9 $的值为 (
A
)

A.$ \frac{4}{3} $
B.$ \frac{3}{4} $
C.$ 2 $
D.$ 3^{\frac{4}{3}} $
答案: A[解析]在等比数列$\{ a_n \}$中,由$a_4 a_5 a_6 = 3$得$a_5^3 = 3$,所以$a_5 = \sqrt[3]{3}$,所以$\log_3 a_1 + \log_3 a_2 + \log_3 a_8 + \log_3 a_9 = \log_3 (a_1 a_2 a_8 a_9) = \log_3 a_5^4 = \log_3 3^{\frac{4}{3}} = \frac{4}{3}$.故选A.
15. [2024·济南一中月考]在等比数列$ \{a_n\} $中,$ a_7· a_{11} = 6 $,$ a_4 + a_{14} = 5 $,则$ \frac{a_{20}}{a_{10}} = $
$\frac{2}{3}$或$\frac{3}{2}$
.
答案: $\frac{2}{3}$或$\frac{3}{2}$[解析]因为$\{ a_n \}$是等比数列,所以$a_7 · a_{11} = a_4 · a_{14} = 6$.又因为$a_4 + a_{14} = 5$,所以$\begin{cases} a_4 = 2, \\ a_{14} = 3 \end{cases}$或$\begin{cases} a_4 = 3, \\ a_{14} = 2. \end{cases}$设公比为$q$.因为$\frac{a_{14}}{a_4} = q^{10}$,所以$q^{10} = \frac{2}{3}$或$q^{10} = \frac{3}{2}$.因为$\frac{a_{20}}{a_{10}} = q^{10}$,所以$\frac{a_{20}}{a_{10}} = \frac{2}{3}$或$\frac{a_{20}}{a_{10}} = \frac{3}{2}$.
16. [2024·南宁外国语学校期中]在等比数列$ \{a_n\} $中,若$ a_7 + a_8 + a_9 + a_{10} = \frac{15}{8} $,$ a_8a_9 = -\frac{9}{8} $,则$ \frac{1}{a_7} + \frac{1}{a_8} + \frac{1}{a_9} + \frac{1}{a_{10}} = $
$-\frac{5}{3}$
.
答案: $-\frac{5}{3}$[解析]因为$\frac{1}{a_7} + \frac{1}{a_{10}} = \frac{a_7 + a_{10}}{a_7 a_{10}}$,$\frac{1}{a_8} + \frac{1}{a_9} = \frac{a_8 + a_9}{a_8 a_9}$且$a_8 a_9 = a_7 a_{10}$,所以$\frac{1}{a_7} + \frac{1}{a_8} + \frac{1}{a_9} + \frac{1}{a_{10}} = \frac{a_7 + a_8 + a_9 + a_{10}}{a_8 a_9} = \frac{15}{8} - \frac{5}{3} = -\frac{5}{3}$.
1. [2024·荆门一中月考]一个等比数列前三项的积为$ 2 $,后三项的积为$ 4 $,且所有项的积为$ 64 $,则该数列有 (
B
)

A.$ 13 $项
B.$ 12 $项
C.$ 11 $项
D.$ 10 $项
答案: B[解析]设数列的通项公式为$a_n = a_1 q^{n-1}$,则前三项分别为$a_1$,$a_1 q$,$a_1 q^2$,后三项分别为$a_1 q^{n-3}$,$a_1 q^{n-2}$,$a_1 q^{n-1}$.由题意得$a_1^3 q^3 = 2$,$a_1^3 q^{3n-6} = 4$,两式相乘得$a_1^6 q^{3(n-1)} = 8$,即$(a_1^2 q^{n-1})^3 = 8 = 2^{12}$,所以$a_1^2 q^{n-1} = 2^2$,解得$n=12$.
2. [2024·南宁一中期中]在等比数列$ \{a_n\} $中,$ a_1 + a_2 = 1 $,$ a_3 + a_4 = 9 $,则$ a_4 + a_5 = $(
B
)

A.$ 27 $
B.$ 27 $或$ -27 $
C.$ 81 $
D.$ 81 $或$ -81 $
答案: B[解析]设公比为$q$.因为$q^2 = \frac{a_3 + a_4}{a_1 + a_2} = 9$,所以$q = \pm 3$,所以$a_4 + a_5 = (a_3 + a_4) q = 27$或$-27$.故选B.
3. [2024·吉安一中期中]已知$ a,b,c $均为正数,若$ a + b + c $,$ b + c - a $,$ c + a - b $,$ a + b - c $构成等比数列,且公比为$ q $,则$ q^3 + q^2 + q $的值为 (
B
)

A.$ 0 $
B.$ 1 $
C.$ 3 $
D.不确定
答案: B[解析]依题意,有$q^3 + q^2 + q = \frac{a+b-c}{a+b+c} + \frac{c+a-b}{a+b+c} + \frac{b+c-a}{a+b+c} = 1$.
4. [2024·银川一中期中]已知数列$ \{a_n\} $满足$ a_1 = 2 $,$ a_{n + 1} = 3a_n + 2 $,则$ a_{2024} = $(
B
)

A.$ 3^{2024} + 1 $
B.$ 3^{2024} - 1 $
C.$ 3^{2024} - 2 $
D.$ 3^{2024} + 2 $
答案: B[解析]由$a_{n+1} = 3a_n + 2$,得$a_{n+1} + 1 = 3(a_n + 1)$,所以$\{ a_n + 1 \}$是首项为$a_1 + 1 = 3$,公比为3的等比数列,所以$a_n + 1 = 3 × 3^{n-1} = 3^n$,即$a_n = 3^n - 1$,所以$a_{2024} = 3^{2024} - 1$.故选B.
5. [2024·淮安淮阴中学月考]在$ 1,3 $中间插入二者的乘积,得到$ 1,3,3 $,称数列$ 1,3,3 $为数列$ 1,3 $的第一次扩展数列,数列$ 1,3,9,3 $为数列$ 1,3 $的第二次扩展数列,重复上述规则,可得$ 1,x_1,x_2,·s,x_{2^n - 1},3 $为数列$ 1,3 $的第$ n $次扩展数列,令$ a_n = \log_3(1× x_1× x_2×·s× x_{2^n - 1}×3) $,则数列$ \{a_n\} $的通项公式为
$a_n = \frac{3^n + 1}{2}$
.
答案: $a_n = \frac{3^n + 1}{2}$[解析]由题意得,$a_n = \log_3 (1 × x_1 × x_2 × ·s × x_{2^{n-1}} × 3)$,所以$a_{n+1} = \log_3 [1 × (1 × x_1) × x_1 × (x_1 × x_2) × x_2 × ·s × x_{2^{n-1}} × 3^3] = \log_3 (1^3 × x_1^3 × x_2^3 × ·s × x_{2^{n-1}}^3 × 3^3) = \log_3 (1^3 × x_1^3 × x_2^3 × ·s × x_{2^{n-1}}^3 × 3^3) - \log_3 3 = 3a_n - 1$,所以$a_{n+1} - \frac{1}{2} = 3(a_n - \frac{1}{2})$.又$a_1 = \log_3 (1 × 3 × 3) = 2$,所以$a_1 - \frac{1}{2} = \frac{3}{2}$,因此$\{ a_n - \frac{1}{2} \}$是以$\frac{3}{2}$为首项,3为公比的等比数列,则$a_n - \frac{3}{2} × 3^{n-1} = \frac{3^n}{2}$,故$a_n = \frac{3^n + 1}{2}$.
6. [2024·九江一中期中]已知数列$ \{a_n\} $的前$ n $项和为$ S_n $,$ a_1 = 1 $,$ S_{n + 1} = 4a_n + 1 $,设$ b_n = a_{n + 1} - 2a_n $.
(1) 证明:数列$ \{b_n\} $是等比数列;
(2) 数列$ \{c_n\} $满足$ c_n = \frac{1}{\log_2b_n + 3}(n\in\mathbf{N}^*) $,设$ T_n = c_1c_2 + c_2c_3 + c_3c_4 + ·s + c_nc_{n + 1} $,求$ T_{20} $.
答案:
(1)证明:由$S_{n+1} = 4a_n + 1$,得当$n \geq 2$时,$S_n = 4a_{n-1} + 1$,① - ②,得$a_{n+1} = 4a_n - 4a_{n-1}$,所以$a_{n+1} - 2a_n = 2(a_n - 2a_{n-1})$.因为$b_n = a_{n+1} - 2a_n$,所以$b_n = 2b_{n-1} (n \geq 2)$.当$n=1$时,由$S_{n+1} = 4a_n + 1$得,$a_1 + a_2 = 4a_1 + 1$.因为$a_1 = 1$,所以$c_2 = 3a_1 + 1 = 4$.所以$b_1 = a_2 - 2a_1 = 2$.所以数列$\{ b_n \}$是首项为2,公比为2的等比数列.
(2)由
(1)可知$b_n = 2^n$,则$c_n = \frac{1}{\log_2 b_n + 3} - \frac{1}{n+3} (n \in N^*)$.所以$T_n = c_1 c_2 + c_2 c_3 + c_3 c_4 + ·s + c_n c_{n+1} = \frac{1}{4 × 5} + \frac{1}{5 × 6} + \frac{1}{6 × 7} + ·s + \frac{1}{(n+3)(n+4)} = (\frac{1}{4} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{6}) + ·s + (\frac{1}{n+3} - \frac{1}{n+4}) = \frac{1}{4} - \frac{1}{n+4} = \frac{n}{4(n+4)}$.所以$T_{20} = \frac{20}{4 × (20+4)} = \frac{5}{24}$.

查看更多完整答案,请扫码查看

关闭