2025年热搜题高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年热搜题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年热搜题高中数学选择性必修第二册人教版》

1. [2024·邯郸一中月考]已知数列$\{ a_{n}\} $是公差不为零的等差数列,且$a_{5},a_{8},a_{13}$是等比数列$\{ b_{n}\} $中的连续三项,若$b_{2}=2$,则$b_{n}=$(
A
)

A.$2×\left( \dfrac{5}{3}\right)^{n-2}$
B.$2×\left( \dfrac{2}{3}\right)^{n-2}$
C.$2×\left( \dfrac{3}{5}\right)^{n-1}$
D.$2×\left( \dfrac{5}{3}\right)^{n-1}$
答案: 1.A 【解析】因为$\{ a_{n}\}$是公差不为零的等差数列,并且$a_{5}$,$a_{8}$,$a_{13}$是等比数列$\{ b_{n}\}$的连续三项,设数列$\{ a_{n}\}$的公差为$d$,则$(a_{5} + 3d)^{2} = a_{5}(a_{5} + 8d)$,化简得$(2a_{5} - 9d)d = 0$。因为$d\neq0$,所以$a_{5} = \frac{9}{2}d$,所以$q = \frac{a_{8}}{a_{5}} = \frac{a_{5} + 3d}{a_{5}} = \frac{\frac{15}{2}d}{\frac{9}{2}d} = \frac{5}{3}$,所以$b_{n} = b_{2}q^{n - 2} = 2 × (\frac{5}{3})^{n - 2}$.故选A.
2. [2024·安阳一中期末]已知$\{ a_{n}\} $为等差数列,其公差为$-2$,且$a_{7}$是$a_{3}$与$a_{9}$的等比中项,$S_{n}$为$\{ a_{n}\} $的前$n$项和,则$S_{10}=$(
D
)

A.$-110$
B.$-90$
C.$90$
D.$110$
答案: 2.D 【解析】因为$a_{3} = a_{1} + 2d = a_{1} - 4$,$a_{7} = a_{1} + 6d = a_{1} - 12$,$a_{9} = a_{1} + 8d = a_{1} - 16$,且$a_{7}$是$a_{3}$与$a_{9}$的等比中项,所以$(a_{1} - 12)^{2} = (a_{1} - 4)(a_{1} - 16)$,解得$a_{1} = 20$,所以$S_{10} = 10 × 20 + \frac{1}{2} × 10 × 9 × ( - 2) = 110$.故选D.
3. [2024·唐山一中月考]已知等比数列$\{ a_{n}\} $的前$n$项和为$S_{n}$,满足$S_{1},2S_{2},3S_{3}$构成等差数列,且$a_{1}a_{2}=a_{3}$,若$\{ (\log_{3}a_{n})^{2}-\lambda \log_{3}a_{n}\} $是递增数列,则实数$\lambda $的取值范围是
$(- 3, + \infty)$
.
答案: 3.$(- 3, + \infty)$ 【解析】由题意,得$4S_{2} = S_{1} + 3S_{3}$,化简得$\frac{1}{3}a_{2} = a_{3}$,所以公比$q = \frac{1}{3}$.因为$a_{1}a_{2} = a_{3}$,即$a_{1}^{2}q = a_{1}q^{2}$,而$a_{1} \neq 0$,所以$a_{1} = \frac{1}{3}$,所以$a_{n} = (\frac{1}{3})^{n}$,所以$(\log_{3}a_{n})^{2} - \lambda\log_{3}a_{n} = n^{2} + \lambda n$.因为$\{ n^{2} + \lambda n\}$是递增数列,所以$(n^{2} + \lambda n) - \lbrack(n - 1)^{2} + \lambda(n - 1)\rbrack = 2n + \lambda - 1 > 0$,$n \geqslant 2$,所以$\lambda > - 2n + 1$,得$\lambda > ( - 2n + 1)_{\max} = - 3$.
4. [2024·哈尔滨三中月考]已知单调递增的等比数列$\{ a_{n}\} $的前$n$项和为$S_{n}$,若$S_{3}=39$,且$3a_{4}$是$a_{6}$与$-a_{5}$的等差中项.
(1)求数列$\{ a_{n}\} $的通项公式;
(2)若数列$\{ b_{n}\} $满足$b_{n}=\log_{3}a_{2n+1}$,且$\{ b_{n}\} $的前$n$项和为$T_{n}$,求$\dfrac{1}{T_{1}}+\dfrac{1}{T_{2}}+\dfrac{1}{T_{3}}+·s +\dfrac{1}{T_{n}}$.
答案: 4.
(1)设数列$\{ a_{n}\}$的公比为$q$.由题意,得$6a_{4} = a_{6} - a_{5}$,即$q^{2} - q - 6 = 0$,解得$q = 3$或$q = - 2$.因为该等比数列是单调递增的,所以$q > 1$,故$q = - 2$舍去.
由$S_{3} = \frac{a_{1}(1 - q^{3})}{1 - q} = 39$,得$a_{1} = 3$,所以$a_{n} = 3^{n}$.
(2)$b_{n} = \log_{3}3^{2n + 1} = 2n + 1$,
所以$T_{n} = 3 + 5 + ·s + (2n + 1) = n(n + 2)$,
所以$\frac{1}{T_{n}} = \frac{1}{n(n + 2)} = \frac{1}{2}(\frac{1}{n} - \frac{1}{n + 2})$,
$\frac{1}{T_{1}} + \frac{1}{T_{2}} + \frac{1}{T_{3}} + ·s + \frac{1}{T_{n}} = \frac{1}{2}(1 - \frac{1}{3}) + \frac{1}{2}(\frac{1}{2} - \frac{1}{4}) +$
$\frac{1}{2}(\frac{1}{3} - \frac{1}{5}) + ·s + \frac{1}{2}(\frac{1}{n} - \frac{1}{n + 2}) = \frac{1}{2}(1 + \frac{1}{2} - \frac{1}{n + 1} -$
$\frac{1}{n + 2}) = \frac{1}{2}(\frac{3}{2} - \frac{1}{n + 1} - \frac{1}{n + 2}) = \frac{3}{4} - \frac{1}{2n + 2} - \frac{1}{2n + 4}$.
5. [2024·黄冈中学期末]已知数列$\{ a_{n}\} $的奇数项是首项为$1$,公差为$d$的等差数列,偶数项是首项为$2$,公比为$q$的等比数列,数列$\{ a_{n}\} $的前$n$项和为$S_{n}$,且满足$S_{3}=a_{4}$,$a_{3}+a_{5}=2+a_{4}$.
(1)求$d$和$q$的值;
(2)求$S_{n}$.
答案: 5.
(1)根据题意,得$\begin{cases} S_{3} = a_{1} + a_{2} + a_{3} = a_{4}, \\a_{3} + a_{5} = 2 + a_{4}, \end{cases}$
即$\begin{cases} 1 + 2 + 1 + d = 2q, \\1 + d + 1 + 2d = 2 + 2q, \end{cases}$解得$\begin{cases} d = 2, \\q = 3. \end{cases}$
(2)由
(1),得当$n$为奇数时,令$n = 2k - 1$,$k \in \mathbf{N}^{*}$,
$a_{2k - 1} = a_{1} + (k - 1)d = 1 + (k - 1) × 2 = 2k - 1$,所以$a_{n} = n$.
当$n$为偶数时,令$n = 2k$,$k \in \mathbf{N}^{*}$,
$a_{2k} = a_{2} · q^{k - 1} = 2 × 3^{k - 1}$,所以$a_{n} = 2 × 3^{\frac{n}{2} - 1}$.
综上所述,$a_{n} = \begin{cases} n,n为奇数, \\2 × 3^{\frac{n}{2} - 1},n为偶数. \end{cases}$
①当$n$为偶数时,数列$\{ a_{n}\}$有$\frac{n}{2}$个奇数项,$\frac{n}{2}$个偶数项,
所以$S_{n} = (a_{1} + a_{3} + ·s + a_{n - 1}) + (a_{2} + a_{4} + ·s + a_{n})$
$= (1 + 3 + ·s + n - 1) + 2 × (1 + 3 + ·s + 3^{\frac{n}{2} - 1})$
$= \frac{1 + n - 1}{2} × \frac{n}{2} + 2 × \frac{1 × (1 - 3^{\frac{n}{2}})}{1 - 3}$
$= \frac{n^{2}}{4} + 3^{\frac{n}{2}} - 1$;
②当$n$为奇数时,$n + 1$为偶数,
所以$S_{n} = S_{n + 1} - a_{n + 1}$
$= \frac{(n + 1)^{2}}{4} + 3^{\frac{n + 1}{2}} - 1 - 2 × 3^{\frac{n - 1}{2}}$
$= \frac{(n + 1)^{2}}{4} + 3^{\frac{n - 1}{2}} - 1$.
综上所述,$S_{n} = \begin{cases} \frac{n^{2}}{4} + 3^{\frac{n}{2}} - 1,n为偶数, \frac{(n + 1)^{2}}{4} + 3^{\frac{n - 1}{2}} - 1,n为奇数. \end{cases}$
6. [2024·河北正定中学月考]已知$\{ a_{n}\} $是一个公差大于$0$的等差数列,且满足$a_{3}a_{6}=55$,$a_{2}+a_{7}=16$.
(1)求数列$\{ a_{n}\} $的通项公式;
(2)若数列$\{ a_{n}\} $和数列$\{ b_{n}\} $满足等式:$a_{n}=\dfrac{b_{1}}{2}+\dfrac{b_{2}}{2^{2}}+\dfrac{b_{3}}{2^{3}}+·s +\dfrac{b_{n}}{2^{n}}$($n$为正整数),求数列$\{ b_{n}\} $的前$n$项和$S_{n}$.
答案: 6.
(1)设等差数列$\{ a_{n}\}$的公差为$d$,则依题知$d > 0$.
由$a_{2} + a_{7} = 16$,得$2a_{1} + 7d = 16$,
由$a_{3}a_{6} = 55$,得$(a_{1} + 2d)(a_{1} + 5d) = 55$,
由①得$a_{1} = 8 - \frac{7}{2}d$,将其代入②得$(16 - 3d)(16 + 3d) = 220$.
即$256 - 9d^{2} = 220$,整理得$d^{2} = 4$.又$d > 0$,所以$d = 2$.
代入①得$a_{1} = 1$,所以$a_{n} = 1 + (n - 1) × 2 = 2n - 1$,所以$a_{n} = 2n - 1$.
(2)令$c_{n} = \frac{b_{n}}{2^{n}}$,则$a_{n} = c_{1} + c_{2} + ·s + c_{n}$,且$a_{n + 1} = c_{1} +$
$c_{2} + ·s + c_{n + 1}$,
两式相减得$a_{n + 1} - a_{n} = c_{n + 1}$,

(1)得$a_{1} = 1$,$d = 2$,$a_{n + 1} - a_{n} = 2$,
则$c_{n + 1} = 2$,即$c_{n} = 2(n \geqslant 2)$,
即当$n \geqslant 2$时,$b_{n} = 2^{n + 1}$.
又当$n = 1$时,$b_{1} = 2a_{1} = 2$,所以$b_{n} = \begin{cases} 2,n = 1, \\2^{n + 1},n \geqslant 2. \end{cases}$
当$n = 1$时,$S_{1} = b_{1} = 2$;
当$n \geqslant 2$时,$S_{n} = b_{1} + b_{2} + b_{3} + ·s + b_{n} = 2 + 2^{3} + 2^{4} + ·s +$
$2^{n + 1} = 2 + 2^{2} + 2^{3} + 2^{4} + ·s + 2^{n + 1} - 4 =$
$\frac{2(1 - 2^{n + 1})}{1 - 2} - 4 =$
$2^{n + 2} - 6$,即$S_{n} = 2^{n + 2} - 6$.
又当$n = 1$时,$2^{3} - 6 = 2$,而$S_{1} = 2$,符合该式,所以$S_{n} =$ $2^{n + 2} - 6$.

查看更多完整答案,请扫码查看

关闭