2025年名校课堂八年级数学上册北师大版江西专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册北师大版江西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂八年级数学上册北师大版江西专版》

$【$例$ 1】$如图,在$\triangle ABC$中,$\angle C = 90^{\circ},$$AC = 10,$$BC = 6,$$EF$为$AB$的垂直平分线,求$AE$的长$.$  
解题思路:连接$BE,$设$AE = x,$则$BE = x,$$CE =$  
$10 - x$  
$.$  
根据勾股定理,得$CE^{2} + BC^{2} = BE^{2},$  
可列方程为  
$(10 - x)^2 + 6^2 = x^2$  
$.$  
解得$x =$  
$\frac{34}{5}$  
$.$  
答案: $10 - x \ (10 - x)^2 + 6^2 = x^2 \ \frac{34}{5}$
1. (2023·随州)如图,在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$AC = 8$,$BC = 6$,$D$为$AC$上一点. 若$BD$是$\angle ABC$的平分线,则$AD =$
5
.
答案: 1.5
$【$例$ 2】$如图,在$\triangle ABC$中,$AB = 15,$$BC = 14,$$AC = 13,$$AD\perp BC,$求$BD$的长$.$  
解题思路:设$BD = x,$则$CD =$  
$14 - x$  
$.$  
根据勾股定理,得$AD^{2} = AB^{2} - BD^{2} = AC^{2} - CD^{2},$可列方程为  
$15^2 - x^2 = 13^2 - (14 - x)^2$  
$.$  
解得$x =$  
$9$  
$.$  
答案: $14 - x \ 15^2 - x^2 = 13^2 - (14 - x)^2 \ 9$
2. 如图,在$\triangle ABC$中,$BC = 4$,$AC = 13$,$AB = 15$,求$\triangle ABC$的面积.
答案: 2.解:过点$A$作$AD \perp BC$于点$D$.设$CD = x$,则$BD = 4 + x$. $\because AC^2 - CD^2 = AB^2 - BD^2$, $\therefore 13^2 - x^2 = 15^2 - (4 + x)^2$,解得$x = 5$.
$\therefore AD^2 = AC^2 - CD^2 = 13^2 - 5^2 = 144$. $\therefore AD = 12$. $\therefore S_{\triangle ABC} = \frac{1}{2}BC \cdot AD = 24$.
3. 如图,在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,$CD\perp AB$于点$D$,$BD = 2$,$CD = 4$,求$AD$的长.
答案: 3.解:设$AD = x$.在$Rt \triangle ACD$中,$AC^2 = AD^2 + CD^2 = x^2 + 4^2$,在$Rt \triangle BCD$中,$BC^2 = CD^2 + BD^2 = 4^2 + 2^2$,在$Rt \triangle ABC$中,$AC^2 + BC^2 = AB^2$,即$x^2 + 4^2 + 4^2 + 2^2 = (x + 2)^2$,解得$x = 8$.
$\therefore AD = 8$.

查看更多完整答案,请扫码查看

关闭