20. (12 分)先化简,再求值:
(1)$2x^{2}-\left[x^{2}-(3x^{2}+2x - 1)\right]$,其中$x = \frac{1}{2}$;
(2)$\frac{1}{2}-2\left(-\frac{2}{3}x+\frac{1}{3}y^{2}\right)+3\left(2x-\frac{2}{3}y^{2}\right)$,其中$x = \frac{3}{11}$,$y = -\frac{3}{2}$.
(3)已知$A = 1 - x^{2}$,$B = x^{2}-4x - 3$,$C = 5x^{2}+4$,求多项式$A - 2[A - B - 2(B - C)]$的值,其中$x = -1$.
(1)$2x^{2}-\left[x^{2}-(3x^{2}+2x - 1)\right]$,其中$x = \frac{1}{2}$;
(2)$\frac{1}{2}-2\left(-\frac{2}{3}x+\frac{1}{3}y^{2}\right)+3\left(2x-\frac{2}{3}y^{2}\right)$,其中$x = \frac{3}{11}$,$y = -\frac{3}{2}$.
(3)已知$A = 1 - x^{2}$,$B = x^{2}-4x - 3$,$C = 5x^{2}+4$,求多项式$A - 2[A - B - 2(B - C)]$的值,其中$x = -1$.
答案:
(1)原式$=4x^{2}+2x-1$,当$x=\dfrac{1}{2}$时,原式$=1$. (2)原式$=-\dfrac{8}{3}y^{2}+\dfrac{22}{3}x+\dfrac{1}{2}$,当$x=\dfrac{3}{11}$,$y=-\dfrac{3}{2}$时,原式$=-\dfrac{7}{2}$. (3)原式$=-A+6B-4C=-13x^{2}-24x-35$,当$x=-1$时,原式$=-24$.
查看更多完整答案,请扫码查看