4. 如图,$D$是$△ ABC$的边$AB$上的一点,$BD=\frac{4}{3}$,$AB = 3$,$BC = 2$.
(1)$△ BCD$与$△ BAC$相似吗?请说明理由;
(2)若$CD=\frac{5}{3}$,求$AC$的长.

(1)$△ BCD$与$△ BAC$相似吗?请说明理由;
(2)若$CD=\frac{5}{3}$,求$AC$的长.
答案:
4. 解:
(1) $△ BCD ∽ △ BAC$。理由如下:
$\because BD = \frac{4}{3}$,$AB = 3$,$BC = 2$,$\therefore \frac{BD}{BC} = \frac{\frac{4}{3}}{2} = \frac{2}{3}$,$\frac{BC}{BA} = \frac{2}{3}$,
$\therefore \frac{BD}{BC} = \frac{BC}{BA}$。
又 $∠ DBC = ∠ CBA$,$\therefore △ BCD ∽ △ BAC$。
(2) $\because △ BCD ∽ △ BAC$,$\therefore \frac{CD}{AC} = \frac{BC}{BA}$,即 $\frac{\frac{5}{3}}{AC} = \frac{2}{3}$,
$\therefore AC = \frac{5}{2}$。
(1) $△ BCD ∽ △ BAC$。理由如下:
$\because BD = \frac{4}{3}$,$AB = 3$,$BC = 2$,$\therefore \frac{BD}{BC} = \frac{\frac{4}{3}}{2} = \frac{2}{3}$,$\frac{BC}{BA} = \frac{2}{3}$,
$\therefore \frac{BD}{BC} = \frac{BC}{BA}$。
又 $∠ DBC = ∠ CBA$,$\therefore △ BCD ∽ △ BAC$。
(2) $\because △ BCD ∽ △ BAC$,$\therefore \frac{CD}{AC} = \frac{BC}{BA}$,即 $\frac{\frac{5}{3}}{AC} = \frac{2}{3}$,
$\therefore AC = \frac{5}{2}$。
查看更多完整答案,请扫码查看