15. (6 分)如图,在平面直角坐标系中,$\triangle ABC$三个顶点的坐标分别为$A(1,2)$,$B(3,1)$,$C(2,3)$,以原点$O$为位似中心,将$\triangle ABC$放大为原来的$2$倍得到$\triangle A'B'C'$.
(1)在图中第一象限内画出符合要求的$\triangle A'B'C'$;(不要求写画法)
(2)$\triangle A'B'C'$的面积是

(1)在图中第一象限内画出符合要求的$\triangle A'B'C'$;(不要求写画法)
(2)$\triangle A'B'C'$的面积是
6
.
答案:
15.解
(1)
(2)6
15.解
(1)
(2)6
16. (8 分)如图,在等腰三角形$ABC$中,$AB = AC$,点$P$在$\angle BAC$平分线$AD$上,过点$P$作线段$EF$分别交$BD$,$AC$于点$E$,$F$. 已知$\angle CEF = 2\angle BAD$.
(1)求证:$\triangle ABC\backsim\triangle EFC$;
(2)若$BE = DE = 3$,$F$是$AC$的中点,求$CF$的值.

(1)求证:$\triangle ABC\backsim\triangle EFC$;
(2)若$BE = DE = 3$,$F$是$AC$的中点,求$CF$的值.
答案:
16.
(1)证明
∵AD平分∠BAC,
∴∠BAC = 2∠BAD,
又∠CEF = 2∠BAD,
∴∠BAC = ∠CEF.
在△ABC和△EFC中,∠BAC = ∠FEC,∠BCA = ∠FCE,
∴△ABC∽△EFC.
(2)解
∵AB = AC,AD平分∠BAC,
∴BD = CD.
∵BE = DE = 3,
∴CD = BD = BE + ED = 6,EC = ED + CD = 9,
BC = 2BD = 12.
∵点F为AC的中点,
∴AC = 2CF.
由
(1)可知,△ABC∽△EFC,
∴$\frac{EC}{AC}$ = $\frac{CF}{BC}$,
∴$\frac{9}{2CF}$ = $\frac{CF}{12}$,
∴CF² = 54,
∴CF = 3$\sqrt{6}$(舍去负值).
(1)证明
∵AD平分∠BAC,
∴∠BAC = 2∠BAD,
又∠CEF = 2∠BAD,
∴∠BAC = ∠CEF.
在△ABC和△EFC中,∠BAC = ∠FEC,∠BCA = ∠FCE,
∴△ABC∽△EFC.
(2)解
∵AB = AC,AD平分∠BAC,
∴BD = CD.
∵BE = DE = 3,
∴CD = BD = BE + ED = 6,EC = ED + CD = 9,
BC = 2BD = 12.
∵点F为AC的中点,
∴AC = 2CF.
由
(1)可知,△ABC∽△EFC,
∴$\frac{EC}{AC}$ = $\frac{CF}{BC}$,
∴$\frac{9}{2CF}$ = $\frac{CF}{12}$,
∴CF² = 54,
∴CF = 3$\sqrt{6}$(舍去负值).
17. (10 分)如图,为了测量一栋楼的高度$OE$,小明同学先在操场上$A$处放一面镜子,向后退到$B$处,恰好在镜子中看到楼的顶部$E$;再将镜子放到$C$处,然后后退到$D$处,恰好再次在镜子中看到楼的顶部$E$($O$,$A$,$B$,$C$,$D$在同一条直线上),测得$AC = 2\ m$,$BD = 2.1\ m$,如果小明眼睛距地面高度$BF$,$DG$为$1.6\ m$,试确定楼的高度$OE$.

答案:
17.解设OE = xm,AO = am,BC = bm.
由△GDC∽△EOC得,$\frac{DG}{OE}$ = $\frac{CD}{CO}$,
即$\frac{1.6}{x}$ = $\frac{2.1 - b}{2 + a}$,整理得,3.2 + 1.6a = 2.1x - bx.
由△FBA∽△EOA得,$\frac{BF}{OE}$ = $\frac{AB}{AO}$,
即$\frac{1.6}{x}$ = $\frac{2 - b}{a}$,
整理得,1.6a = 2x - bx.
故3.2 + 2x - bx = 2.1x - bx,解得x = 32.
故楼的高度OE为32m.
由△GDC∽△EOC得,$\frac{DG}{OE}$ = $\frac{CD}{CO}$,
即$\frac{1.6}{x}$ = $\frac{2.1 - b}{2 + a}$,整理得,3.2 + 1.6a = 2.1x - bx.
由△FBA∽△EOA得,$\frac{BF}{OE}$ = $\frac{AB}{AO}$,
即$\frac{1.6}{x}$ = $\frac{2 - b}{a}$,
整理得,1.6a = 2x - bx.
故3.2 + 2x - bx = 2.1x - bx,解得x = 32.
故楼的高度OE为32m.
查看更多完整答案,请扫码查看