2025年文轩图书假期生活指导暑八年级数学通用版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年文轩图书假期生活指导暑八年级数学通用版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
3. 阅读与思考
如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
×年×月×日星期日
没有直角尺也能作出直角
今天,我在书店一本书上看到下面材料:木工师傅有一块如图1所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?
办法一:如图1,可利用一把有刻度的直尺在AB上量出CD= 30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.

办法二:如图2,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS= MN,得到点S,作直线SC,则∠RCS= 90°.
我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……
任务:
(1)填空:“办法一”依据的一个数学定理是
(2)根据“办法二”的操作过程,证明∠RCS= 90°;
(3)①尺规作图:请在图3的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).
如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
×年×月×日星期日
没有直角尺也能作出直角
今天,我在书店一本书上看到下面材料:木工师傅有一块如图1所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?
办法一:如图1,可利用一把有刻度的直尺在AB上量出CD= 30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.
办法二:如图2,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS= MN,得到点S,作直线SC,则∠RCS= 90°.
我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……
任务:
(1)填空:“办法一”依据的一个数学定理是
勾股定理的逆定理
;(2)根据“办法二”的操作过程,证明∠RCS= 90°;
(3)①尺规作图:请在图3的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);
②说明你的作法所依据的数学定理或基本事实(写出一个即可).
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
答案:
解:
(1)
∵CD=30,DE=50,CE=40,
∴CD²+CE²=30²+40²=50²=DE²,
∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;
故答案为:勾股定理的逆定理;
(2)由作图方法可知,QR=QC,QS=QC,
∴∠QCR=∠QRC,∠QCS=∠QSC,
∵∠SRC+∠QCS+∠QCR+∠QSC=180°,
∴2(∠QCR+∠QCS)=180°,
∴∠QCR+∠QCS=90°,
即∠RCS=90°;
(3)①如图所示,直线PC即为所求;
②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
解:
(1)
∵CD=30,DE=50,CE=40,
∴CD²+CE²=30²+40²=50²=DE²,
∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;
故答案为:勾股定理的逆定理;
(2)由作图方法可知,QR=QC,QS=QC,
∴∠QCR=∠QRC,∠QCS=∠QSC,
∵∠SRC+∠QCS+∠QCR+∠QSC=180°,
∴2(∠QCR+∠QCS)=180°,
∴∠QCR+∠QCS=90°,
即∠RCS=90°;
(3)①如图所示,直线PC即为所求;
②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
查看更多完整答案,请扫码查看