21. (9 分)根据本章所学知识,解决以下问题:
(1)已知 $a^{2}\cdot a^{7} = a^{b}$,则 $b = $
(2)已知 $a^{x} = 3$,求 $a^{7x}\cdot a^{4x}$ 的值.
(3)已知 $7^{x} = 4$,$7^{y} = 5$,$3^{p} = 10$,$3^{q} = 5$,请解关于 $s$ 的方程:$2s - 7^{x + y}(s - 2) = 9^{p - q}$.
(1)已知 $a^{2}\cdot a^{7} = a^{b}$,则 $b = $
9
.(2)已知 $a^{x} = 3$,求 $a^{7x}\cdot a^{4x}$ 的值.
$\because a^{x}=3$,$\therefore a^{7x}\cdot a^{4x}=a^{11x}=(a^{x})^{11}$,$\because a^{x}=3$,$\therefore$原式$=3^{11}$.
(3)已知 $7^{x} = 4$,$7^{y} = 5$,$3^{p} = 10$,$3^{q} = 5$,请解关于 $s$ 的方程:$2s - 7^{x + y}(s - 2) = 9^{p - q}$.
$\because 7^{x}=4$,$7^{y}=5$,$3^{p}=10$,$3^{q}=5$,$\therefore 7^{x}\cdot 7^{y}=7^{x+y}=20$,$3^{p}÷ 3^{q}=10÷ 5=2$,即$7^{x+y}=20$,$3^{p-q}=2$,$2s-7^{x+y}(s-2)=9^{p-q}$,$2s-20(s-2)=3^{2(p-q)}=(3^{p-q})^{2}$,$2s-20(s-2)=4$,解得$-18s=-36$,$\therefore s=2$.
答案:
(1)9
(2)$\because a^{x}=3$,$\therefore a^{7x}\cdot a^{4x}=a^{11x}=(a^{x})^{11}$,$\because a^{x}=3$,$\therefore$原式$=3^{11}$.
(3)$\because 7^{s}=4$,$7^{t}=5$,$3^{p}=10$,$3^{q}=5$,$\therefore 7^{s}\cdot 7^{t}=7^{s+t}=20$,$3^{p}÷ 3^{q}=10÷ 5=2$,即$7^{s+t}=20$,$3^{p-q}=2$,$2s-7^{s+t}(s-2)=9^{p-q}$,$2s-20(s-2)=3^{2(p-q)}=(3^{p-q})^{2}$,$2s-20(s-2)=4$,解得$-18s=-36$,$\therefore s=2$.
(2)$\because a^{x}=3$,$\therefore a^{7x}\cdot a^{4x}=a^{11x}=(a^{x})^{11}$,$\because a^{x}=3$,$\therefore$原式$=3^{11}$.
(3)$\because 7^{s}=4$,$7^{t}=5$,$3^{p}=10$,$3^{q}=5$,$\therefore 7^{s}\cdot 7^{t}=7^{s+t}=20$,$3^{p}÷ 3^{q}=10÷ 5=2$,即$7^{s+t}=20$,$3^{p-q}=2$,$2s-7^{s+t}(s-2)=9^{p-q}$,$2s-20(s-2)=3^{2(p-q)}=(3^{p-q})^{2}$,$2s-20(s-2)=4$,解得$-18s=-36$,$\therefore s=2$.
22. (12 分)已知 $(x - a)(x - b) = x^{2} - 6mx + 9m^{2} - 4$,其中 $a > b$.
(1)$a + b = $
(2)求 $a - b$ 的值.
(3)若 $a^{2} - b^{2}$ 是能被 9 整除的整数,且 $m$ 是正整数,求 $m$ 的最小值.
(1)$a + b = $
$6m$
,$ab = $______$9m^{2}-4$
.(用含 $m$ 的式子表示)(2)求 $a - b$ 的值.
(3)若 $a^{2} - b^{2}$ 是能被 9 整除的整数,且 $m$ 是正整数,求 $m$ 的最小值.
答案:
(1)$6m$,$9m^{2}-4$
(2)由(1)可知,$a+b=6m$,$ab=9m^{2}-4$,$\therefore a^{2}+b^{2}=(a+b)^{2}-2ab=(6m)^{2}-2(9m^{2}-4)=36m^{2}-18m^{2}+8=18m^{2}+8$,$\therefore (a-b)^{2}=a^{2}+b^{2}-2ab=18m^{2}+8-2(9m^{2}-4)=18m^{2}+8-18m^{2}+8=16$.
(3)$\because a+b=6m$,$a-b=4$,$\therefore a^{2}-b^{2}=24m$,$\because 24m$能被9整除,$\therefore m$的最小值是3.
(2)由(1)可知,$a+b=6m$,$ab=9m^{2}-4$,$\therefore a^{2}+b^{2}=(a+b)^{2}-2ab=(6m)^{2}-2(9m^{2}-4)=36m^{2}-18m^{2}+8=18m^{2}+8$,$\therefore (a-b)^{2}=a^{2}+b^{2}-2ab=18m^{2}+8-2(9m^{2}-4)=18m^{2}+8-18m^{2}+8=16$.
(3)$\because a+b=6m$,$a-b=4$,$\therefore a^{2}-b^{2}=24m$,$\because 24m$能被9整除,$\therefore m$的最小值是3.
查看更多完整答案,请扫码查看