2. 一辆客车从甲地开往乙地,2 小时行驶 160 千米,此时离乙地还有 320 千米。照这样计算,这辆客车从甲地行驶到乙地共需几小时?
答案:
解析:本题可先根据已知条件算出客车的速度,再求出甲地到乙地的总路程,最后根据“时间 = 路程÷速度”求出客车从甲地行驶到乙地共需的时间。
1. 计算客车的速度:
已知客车$2$小时行驶$160$千米,根据“速度 = 路程÷时间”,可得客车速度为$160÷2 = 80$(千米/小时)。
2. 计算甲地到乙地的总路程:
已知客车$2$小时行驶了$160$千米,此时离乙地还有$320$千米,那么甲地到乙地的总路程为已行驶的路程加上未行驶的路程,即$160 + 320 = 480$(千米)。
3. 计算客车从甲地行驶到乙地共需的时间:
根据“时间 = 路程÷速度”,总路程为$480$千米,速度为$80$千米/小时,可得所需时间为$480÷80 = 6$(小时)。
答案:
解:$160÷2 = 80$(千米/小时)
$160 + 320 = 480$(千米)
$480÷80 = 6$(小时)
答:这辆客车从甲地行驶到乙地共需$6$小时。
1. 计算客车的速度:
已知客车$2$小时行驶$160$千米,根据“速度 = 路程÷时间”,可得客车速度为$160÷2 = 80$(千米/小时)。
2. 计算甲地到乙地的总路程:
已知客车$2$小时行驶了$160$千米,此时离乙地还有$320$千米,那么甲地到乙地的总路程为已行驶的路程加上未行驶的路程,即$160 + 320 = 480$(千米)。
3. 计算客车从甲地行驶到乙地共需的时间:
根据“时间 = 路程÷速度”,总路程为$480$千米,速度为$80$千米/小时,可得所需时间为$480÷80 = 6$(小时)。
答案:
解:$160÷2 = 80$(千米/小时)
$160 + 320 = 480$(千米)
$480÷80 = 6$(小时)
答:这辆客车从甲地行驶到乙地共需$6$小时。
3. 商店购进 10 箱吹风机,每箱 5 个,每箱成本价 475 元。现以每个 110 元卖出。
(1)商店购进这批吹风机一共花了多少元?要解决这个问题,需要用到哪些信息?
(2)算式“110×5”解决的问题是(
(3)根据题目信息,请你提一个“用两步或两步以上计算”能解决的问题并解答。
(1)商店购进这批吹风机一共花了多少元?要解决这个问题,需要用到哪些信息?
购进10箱吹风机,每箱成本价475元
(2)算式“110×5”解决的问题是(
每箱吹风机卖出多少元
)。(3)根据题目信息,请你提一个“用两步或两步以上计算”能解决的问题并解答。
问题:商店卖出这批吹风机一共能赚多少元?10×5=50(个)110×50=5500(元)5500-4750=750(元)
答案:
(1)需要用到的信息:购进10箱吹风机,每箱成本价475元。
475×10=4750(元)
(2)每箱吹风机卖出多少元
(3)问题:商店卖出这批吹风机一共能赚多少元?
10×5=50(个)
110×50=5500(元)
5500-4750=750(元)
(1)需要用到的信息:购进10箱吹风机,每箱成本价475元。
475×10=4750(元)
(2)每箱吹风机卖出多少元
(3)问题:商店卖出这批吹风机一共能赚多少元?
10×5=50(个)
110×50=5500(元)
5500-4750=750(元)
4. 下面是红旗小学四(1)班学生本学期体育成绩统计表:
| 成绩 | 合计 | 优秀 | 良好 | 及格 | 不及格 |
| 记录 | | 正正正 | 正正正下 | 正一 | 下 |
| 人数 | | | | | |

(1)完成统计表中的人数统计。
(2)制作统计图。

(3)这个班( )的人数最多,( )的人数最少。
| 成绩 | 合计 | 优秀 | 良好 | 及格 | 不及格 |
| 记录 | | 正正正 | 正正正下 | 正一 | 下 |
| 人数 | | | | | |
(1)完成统计表中的人数统计。
(2)制作统计图。
(3)这个班( )的人数最多,( )的人数最少。
答案:
答案略
查看更多完整答案,请扫码查看