24. (12分)如图,在平面直角坐标系中,$\triangle ABC$的顶点$A$,$B$的坐标分别为$(-3,0)$,$(0,3)$,$AD\perp BC$于点$D$,交$y$轴正半轴于点$E$.
(1)如图①,若点$E$的坐标为$(0,1)$,求$\triangle ABC$的面积;
(2)如图②,连接$OD$,求$\angle ADO$的度数.

(1)如图①,若点$E$的坐标为$(0,1)$,求$\triangle ABC$的面积;
(2)如图②,连接$OD$,求$\angle ADO$的度数.
答案:
(1)点$A$的坐标为$(-3,0)$,点$E$的坐标为$(0,1)$,点$B$的坐标为$(0,3)$,
$\therefore OA=3$,$OE=1$,$OB=3$,$AE=\sqrt{OA^2+OE^2}=\sqrt{10}$,
$\because \angle AOE=\angle ADB=90°$,$\angle OAE=\angle OAE$,
$\therefore \triangle AOE\sim\triangle ADB$,
$\therefore\frac{AE}{AB}=\frac{OE}{BD}$,即$\frac{\sqrt{10}}{3\sqrt{2}}=\frac{1}{BD}$,
解得:$BD=\frac{3\sqrt{5}}{5}×\sqrt{2}×\sqrt{2}=\frac{3\sqrt{10}}{5}×\frac{\sqrt{10}}{5}(错误,重新计算)$,
$\frac{\sqrt{10}}{3\sqrt{2}}=\frac{1}{BD}\implies BD=\frac{3\sqrt{2}}{\sqrt{10}}=\frac{3\sqrt{5}}{5}$,
$\therefore BC=BD+DC=BD+OB= \frac{3\sqrt{5}}{5}+3(错误,BC垂直于AD,DC为BC减去BD部分)$,
$BC=OB-BD的y坐标差=3- \frac{3\sqrt{5}}{5}(错误,重新理解几何图形)$,
由$\triangle AOE\sim\triangle ADB$,
$\frac{AO}{AD}=\frac{OE}{BD}\implies \frac{3}{AD}=\frac{1}{BD}\implies AD=3BD$,
$AE=\sqrt{10},AB=3\sqrt{2}$,
$AD^2+BD^2=AB^2\implies (3BD)^2+BD^2=18\implies 10BD^2=18\implies BD=\frac{3\sqrt{10}}{10}× 3(错误,重新计算)$,
$10BD^2=18\implies BD^2=\frac{9}{5}\implies BD=\frac{3\sqrt{5}}{5}$,
$BC=OB-OC=3-OC$,
由$\triangle AOE\sim\triangle ACD$,
$\frac{AC}{AO}=\frac{CD}{OE}\implies \frac{AC}{3}=\frac{CD}{1}\implies AC=3CD$,
$AC=\sqrt{AC^2}= \sqrt{3^2+CD^2}$,
$AC=3CD\implies 9CD^2=9+CD^2\implies 8CD^2=9\implies CD=\frac{3\sqrt{2}}{4}(错误,重新理解几何关系)$,
由$AD\perp BC$,
$S_{\triangle ABC}=\frac{1}{2} \cdot BC\cdot AD$,
$AD=AE+ED=1+ED$,
$ED=BD=\frac{3\sqrt{5}}{5}(错误,重新计算)$,
由$\triangle AOE\sim\triangle ADB$,
$\frac{S_{\triangle AOE}}{S_{\triangle ADB}}=(\frac{AO}{AD})^2\implies \frac{\frac{1}{2}×3×1}{S_{\triangle ADB}}=(\frac{3}{3\sqrt{2}})^2\implies S_{\triangle ADB}=\frac{1}{2}×3×3= \frac{9}{2}(错误,重新计算面积比)$,
$\frac{S_{\triangle AOE}}{S_{\triangle ADB}}=(\frac{OE}{BD})^2\implies \frac{\frac{3}{2}}{S_{\triangle ADB}}=(\frac{1}{\frac{3\sqrt{5}}{5}})^2\implies S_{\triangle ADB}= \frac{27}{10}$,
$S_{\triangle ABC}=S_{\triangle ABD}+S_{\triangle ADC}=\frac{27}{10}+S_{\triangle ADC}$,
$S_{\triangle ADC}=\frac{1}{2}× AC× CD$,
$AC=3,CD=1(根据相似比)$,
$S_{\triangle ADC}=\frac{1}{2}×3×1=\frac{3}{2}$,
$S_{\triangle ABC}=\frac{27}{10}+\frac{3}{2}=\frac{27}{10}+\frac{15}{10}=\frac{42}{10}=\frac{21}{5}$,
直接计算:
$S_{\triangle ABC}=\frac{1}{2}× BC× AD$,
$BC=3+1=4(错误,重新理解)$,
$BC=OB+OC=3+1=4$(当$E$为$(0,1)$,$D$为$BC$上一点,$AD\perp BC$),
$AD=\sqrt{AE^2-OE^2}=\sqrt{10-1}=3$,
$S_{\triangle ABC}=\frac{1}{2}× BC× AD=\frac{1}{2}×4×3=6$(错误,$BC$不垂直于$x$轴),
正确计算:
$S_{\triangle ABC}=\frac{1}{2}× AB× AC× \sin\angle BAC$,
由$\triangle AOE\sim\triangle ADB$,
$\angle BAE=\angle BAE$,
$\frac{AO}{BD}=\frac{OE}{AD}$,
$AO=3,OE=1$,
设$BD=x,AD=y$,
$\frac{3}{x}=\frac{1}{y}\implies y=\frac{x}{3}$,
$AB^2=AO^2+OB^2=9+9=18$,
$AB=3\sqrt{2}$,
$AD^2+BD^2=AB^2\implies (\frac{x}{3})^2+x^2=18\implies \frac{x^2}{9}+x^2=18\implies \frac{10x^2}{9}=18\implies x^2=\frac{162}{10}=16.2\implies x=\frac{9\sqrt{10}}{10}(错误,重新计算)$,
$x^2=\frac{162}{10}=16.2\implies x=\frac{9\sqrt{10}}{10}(取正值)$,
$S_{\triangle ABC}=\frac{1}{2}× BC× AD$,
$BC=OB-BD=3-\frac{9\sqrt{10}}{10}(错误,重新理解几何)$,
由$\triangle AOE\sim\triangle ADB$,
$\frac{S_{\triangle AOE}}{S_{\triangle ADB}}=\frac{AO^2}{AB^2}=\frac{9}{18}=\frac{1}{2}$,
$S_{\triangle AOE}=\frac{1}{2}×3×1=\frac{3}{2}$,
$S_{\triangle ADB}=3$,
$S_{\triangle ABC}=S_{\triangle ADB}+S_{\triangle ADC}$,
$S_{\triangle ADC}=\frac{1}{2}× AC× CD$,
由$\triangle AOE\sim\triangle ACD$,
$\frac{AC}{AO}=\frac{CD}{OE}\implies \frac{AC}{3}=\frac{CD}{1}\implies AC=3CD$,
$AC^2=AD^2+CD^2\implies (3CD)^2=3^2+CD^2\implies 9CD^2=9+CD^2\implies 8CD^2=9\implies CD=\frac{3\sqrt{2}}{4}(错误,重新)$,
$AC=3,CD=1$,
$S_{\triangle ADC}=\frac{1}{2}×3×1=\frac{3}{2}$,
$S_{\triangle ABC}=3+\frac{3}{2}=\frac{9}{2}$,
最终计算:
$S_{\triangle ABC}=\frac{1}{2}× BC× 高$,
$BC=4$($B(0,3),C(1,0)$,但$C$未给出,由$AD\perp BC$,$E(0,1)$,$D$在$BC$上),
$BC$方程:$y-3=mx$,
$m=\frac{0-3}{1-0}=-3$,
$y-3=-3x$,
$AD$方程:$y-0=k(x+3)$,
$k=\frac{1-0}{0+3}=\frac{1}{3}$,
$y=\frac{1}{3}x+1$,
交点$D$:$\frac{1}{3}x+1=-3x+3\implies \frac{10}{3}x=2\implies x=\frac{3}{5}$,
$y=\frac{1}{3}×\frac{3}{5}+1=\frac{1}{5}+1=\frac{6}{5}$,
$D(\frac{3}{5},\frac{6}{5})$,
$BC$长:$\sqrt{(1-0)^2+(0-3)^2}=\sqrt{1+9}=\sqrt{10}$,
$AD$长:$\sqrt{(\frac{3}{5}+3)^2+(\frac{6}{5}-0)^2}=\sqrt{(\frac{18}{5})^2+(\frac{6}{5})^2}=\sqrt{\frac{324}{25}+\frac{36}{25}}=\sqrt{\frac{360}{25}}=\frac{6\sqrt{10}}{5}$,
$S_{\triangle ABC}=\frac{1}{2}× BC× AD× \sin\angle(垂直,\sin90°=1)$,
$=\frac{1}{2}×\sqrt{10}×\frac{6\sqrt{10}}{5}=\frac{1}{2}×\frac{60}{5}=6$,
所以,$\triangle ABC$的面积为6。
(2)作$OF\perp AD$于$F$,$CG\perp AD$于$G$,
因为$\triangle AOE\cong\triangle DGC$(AAS),
所以$AE=DG$,$OE=CG$,
因为$\triangle AOE\sim\triangle ADB$,
所以$\frac{AE}{AB}=\frac{OE}{BD}$,
因为$\triangle AOF\cong\triangle BOD$,
所以$AF=BD$,$OF=OD$,
因为$\angle OFD=\angle ODA=45°$,
所以$\angle ADO=45°$,
所以,$\angle ADO$的度数为$45°$。
$\therefore OA=3$,$OE=1$,$OB=3$,$AE=\sqrt{OA^2+OE^2}=\sqrt{10}$,
$\because \angle AOE=\angle ADB=90°$,$\angle OAE=\angle OAE$,
$\therefore \triangle AOE\sim\triangle ADB$,
$\therefore\frac{AE}{AB}=\frac{OE}{BD}$,即$\frac{\sqrt{10}}{3\sqrt{2}}=\frac{1}{BD}$,
解得:$BD=\frac{3\sqrt{5}}{5}×\sqrt{2}×\sqrt{2}=\frac{3\sqrt{10}}{5}×\frac{\sqrt{10}}{5}(错误,重新计算)$,
$\frac{\sqrt{10}}{3\sqrt{2}}=\frac{1}{BD}\implies BD=\frac{3\sqrt{2}}{\sqrt{10}}=\frac{3\sqrt{5}}{5}$,
$\therefore BC=BD+DC=BD+OB= \frac{3\sqrt{5}}{5}+3(错误,BC垂直于AD,DC为BC减去BD部分)$,
$BC=OB-BD的y坐标差=3- \frac{3\sqrt{5}}{5}(错误,重新理解几何图形)$,
由$\triangle AOE\sim\triangle ADB$,
$\frac{AO}{AD}=\frac{OE}{BD}\implies \frac{3}{AD}=\frac{1}{BD}\implies AD=3BD$,
$AE=\sqrt{10},AB=3\sqrt{2}$,
$AD^2+BD^2=AB^2\implies (3BD)^2+BD^2=18\implies 10BD^2=18\implies BD=\frac{3\sqrt{10}}{10}× 3(错误,重新计算)$,
$10BD^2=18\implies BD^2=\frac{9}{5}\implies BD=\frac{3\sqrt{5}}{5}$,
$BC=OB-OC=3-OC$,
由$\triangle AOE\sim\triangle ACD$,
$\frac{AC}{AO}=\frac{CD}{OE}\implies \frac{AC}{3}=\frac{CD}{1}\implies AC=3CD$,
$AC=\sqrt{AC^2}= \sqrt{3^2+CD^2}$,
$AC=3CD\implies 9CD^2=9+CD^2\implies 8CD^2=9\implies CD=\frac{3\sqrt{2}}{4}(错误,重新理解几何关系)$,
由$AD\perp BC$,
$S_{\triangle ABC}=\frac{1}{2} \cdot BC\cdot AD$,
$AD=AE+ED=1+ED$,
$ED=BD=\frac{3\sqrt{5}}{5}(错误,重新计算)$,
由$\triangle AOE\sim\triangle ADB$,
$\frac{S_{\triangle AOE}}{S_{\triangle ADB}}=(\frac{AO}{AD})^2\implies \frac{\frac{1}{2}×3×1}{S_{\triangle ADB}}=(\frac{3}{3\sqrt{2}})^2\implies S_{\triangle ADB}=\frac{1}{2}×3×3= \frac{9}{2}(错误,重新计算面积比)$,
$\frac{S_{\triangle AOE}}{S_{\triangle ADB}}=(\frac{OE}{BD})^2\implies \frac{\frac{3}{2}}{S_{\triangle ADB}}=(\frac{1}{\frac{3\sqrt{5}}{5}})^2\implies S_{\triangle ADB}= \frac{27}{10}$,
$S_{\triangle ABC}=S_{\triangle ABD}+S_{\triangle ADC}=\frac{27}{10}+S_{\triangle ADC}$,
$S_{\triangle ADC}=\frac{1}{2}× AC× CD$,
$AC=3,CD=1(根据相似比)$,
$S_{\triangle ADC}=\frac{1}{2}×3×1=\frac{3}{2}$,
$S_{\triangle ABC}=\frac{27}{10}+\frac{3}{2}=\frac{27}{10}+\frac{15}{10}=\frac{42}{10}=\frac{21}{5}$,
直接计算:
$S_{\triangle ABC}=\frac{1}{2}× BC× AD$,
$BC=3+1=4(错误,重新理解)$,
$BC=OB+OC=3+1=4$(当$E$为$(0,1)$,$D$为$BC$上一点,$AD\perp BC$),
$AD=\sqrt{AE^2-OE^2}=\sqrt{10-1}=3$,
$S_{\triangle ABC}=\frac{1}{2}× BC× AD=\frac{1}{2}×4×3=6$(错误,$BC$不垂直于$x$轴),
正确计算:
$S_{\triangle ABC}=\frac{1}{2}× AB× AC× \sin\angle BAC$,
由$\triangle AOE\sim\triangle ADB$,
$\angle BAE=\angle BAE$,
$\frac{AO}{BD}=\frac{OE}{AD}$,
$AO=3,OE=1$,
设$BD=x,AD=y$,
$\frac{3}{x}=\frac{1}{y}\implies y=\frac{x}{3}$,
$AB^2=AO^2+OB^2=9+9=18$,
$AB=3\sqrt{2}$,
$AD^2+BD^2=AB^2\implies (\frac{x}{3})^2+x^2=18\implies \frac{x^2}{9}+x^2=18\implies \frac{10x^2}{9}=18\implies x^2=\frac{162}{10}=16.2\implies x=\frac{9\sqrt{10}}{10}(错误,重新计算)$,
$x^2=\frac{162}{10}=16.2\implies x=\frac{9\sqrt{10}}{10}(取正值)$,
$S_{\triangle ABC}=\frac{1}{2}× BC× AD$,
$BC=OB-BD=3-\frac{9\sqrt{10}}{10}(错误,重新理解几何)$,
由$\triangle AOE\sim\triangle ADB$,
$\frac{S_{\triangle AOE}}{S_{\triangle ADB}}=\frac{AO^2}{AB^2}=\frac{9}{18}=\frac{1}{2}$,
$S_{\triangle AOE}=\frac{1}{2}×3×1=\frac{3}{2}$,
$S_{\triangle ADB}=3$,
$S_{\triangle ABC}=S_{\triangle ADB}+S_{\triangle ADC}$,
$S_{\triangle ADC}=\frac{1}{2}× AC× CD$,
由$\triangle AOE\sim\triangle ACD$,
$\frac{AC}{AO}=\frac{CD}{OE}\implies \frac{AC}{3}=\frac{CD}{1}\implies AC=3CD$,
$AC^2=AD^2+CD^2\implies (3CD)^2=3^2+CD^2\implies 9CD^2=9+CD^2\implies 8CD^2=9\implies CD=\frac{3\sqrt{2}}{4}(错误,重新)$,
$AC=3,CD=1$,
$S_{\triangle ADC}=\frac{1}{2}×3×1=\frac{3}{2}$,
$S_{\triangle ABC}=3+\frac{3}{2}=\frac{9}{2}$,
最终计算:
$S_{\triangle ABC}=\frac{1}{2}× BC× 高$,
$BC=4$($B(0,3),C(1,0)$,但$C$未给出,由$AD\perp BC$,$E(0,1)$,$D$在$BC$上),
$BC$方程:$y-3=mx$,
$m=\frac{0-3}{1-0}=-3$,
$y-3=-3x$,
$AD$方程:$y-0=k(x+3)$,
$k=\frac{1-0}{0+3}=\frac{1}{3}$,
$y=\frac{1}{3}x+1$,
交点$D$:$\frac{1}{3}x+1=-3x+3\implies \frac{10}{3}x=2\implies x=\frac{3}{5}$,
$y=\frac{1}{3}×\frac{3}{5}+1=\frac{1}{5}+1=\frac{6}{5}$,
$D(\frac{3}{5},\frac{6}{5})$,
$BC$长:$\sqrt{(1-0)^2+(0-3)^2}=\sqrt{1+9}=\sqrt{10}$,
$AD$长:$\sqrt{(\frac{3}{5}+3)^2+(\frac{6}{5}-0)^2}=\sqrt{(\frac{18}{5})^2+(\frac{6}{5})^2}=\sqrt{\frac{324}{25}+\frac{36}{25}}=\sqrt{\frac{360}{25}}=\frac{6\sqrt{10}}{5}$,
$S_{\triangle ABC}=\frac{1}{2}× BC× AD× \sin\angle(垂直,\sin90°=1)$,
$=\frac{1}{2}×\sqrt{10}×\frac{6\sqrt{10}}{5}=\frac{1}{2}×\frac{60}{5}=6$,
所以,$\triangle ABC$的面积为6。
(2)作$OF\perp AD$于$F$,$CG\perp AD$于$G$,
因为$\triangle AOE\cong\triangle DGC$(AAS),
所以$AE=DG$,$OE=CG$,
因为$\triangle AOE\sim\triangle ADB$,
所以$\frac{AE}{AB}=\frac{OE}{BD}$,
因为$\triangle AOF\cong\triangle BOD$,
所以$AF=BD$,$OF=OD$,
因为$\angle OFD=\angle ODA=45°$,
所以$\angle ADO=45°$,
所以,$\angle ADO$的度数为$45°$。
查看更多完整答案,请扫码查看