1. 当一个一元二次方程的一边是0,另一边能分解为两个
一次因式
的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程
,这种解一元二次方程的方法叫做因式分解法
。
答案:
一次因式 一元一次方程 因式分解法
1. 方程$(x - 1)(x + 2) = 0$的解是 (
A.$x_1 = 1$,$x_2 = 2$
B.$x_1 = -1$,$x_2 = 2$
C.$x_1 = 1$,$x_2 = -2$
D.$x_1 = -1$,$x_2 = -2$
C
)A.$x_1 = 1$,$x_2 = 2$
B.$x_1 = -1$,$x_2 = 2$
C.$x_1 = 1$,$x_2 = -2$
D.$x_1 = -1$,$x_2 = -2$
答案:
C
2. 一元二次方程$x^2 = x$的实数根是 (
A.$x = 0或x = 1$
B.$x = 0$
C.$x = 1$
D.$x = ±1$
A
)A.$x = 0或x = 1$
B.$x = 0$
C.$x = 1$
D.$x = ±1$
答案:
A
3. 方程$(x - 1)(x + 2) = x - 1$的解是 (
A.$x_1 = x_2 = -2$
B.$x_1 = 1$,$x_2 = -2$
C.$x_1 = -1$,$x_2 = 1$
D.$x_1 = -1$,$x_2 = 3$
C
)A.$x_1 = x_2 = -2$
B.$x_1 = 1$,$x_2 = -2$
C.$x_1 = -1$,$x_2 = 1$
D.$x_1 = -1$,$x_2 = 3$
答案:
C
4. 若菱形的两条对角线的长分别是方程$x^2 - 10x + 24 = 0$的两实数根,则菱形的面积为
12
。
答案:
12
5. 用因式分解法解下列方程:
(1)$x^2 + 5x = 0$; (2)$(x - 1)^2 = x - 1$;
(3)$2x(x - 3) + x = 3$; (4)$(x + 2)^2 = 3x + 6$;
(5)$3x(2x + 3) = 4x + 6$; (6)$2y^2 + 4y = y + 2$。
(1)$x^2 + 5x = 0$; (2)$(x - 1)^2 = x - 1$;
(3)$2x(x - 3) + x = 3$; (4)$(x + 2)^2 = 3x + 6$;
(5)$3x(2x + 3) = 4x + 6$; (6)$2y^2 + 4y = y + 2$。
答案:
(1)$x_{1}=0,x_{2}=-5$.
(2)$x_{1}=2,x_{2}=1$.
(3)$x_{1}=3,x_{2}=-\frac {1}{2}$.
(4)$x_{1}=1,x_{2}=-2$.
(5)$x_{1}=\frac {2}{3},x_{2}=-\frac {3}{2}$.
(6)$y_{1}=-2,y_{2}=\frac {1}{2}$.
(1)$x_{1}=0,x_{2}=-5$.
(2)$x_{1}=2,x_{2}=1$.
(3)$x_{1}=3,x_{2}=-\frac {1}{2}$.
(4)$x_{1}=1,x_{2}=-2$.
(5)$x_{1}=\frac {2}{3},x_{2}=-\frac {3}{2}$.
(6)$y_{1}=-2,y_{2}=\frac {1}{2}$.
查看更多完整答案,请扫码查看