2026年秒杀中考数学安徽专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年秒杀中考数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年秒杀中考数学安徽专版》

22. 如图1,在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ}$,$AC = BC$,点$D$为边$AB$中点,点$E$,$F$分别在边$AC$,$BC$上,连接$DE$,$DF$和$EF$,$ED \perp DF$,连接$BE$。
(1) 求证:$\angle AED = \angle CFD$。
(2) 连接$EF$,设$\angle CBE = k \angle ADE$。
(i) 当$k = 1$时,求$\frac{CF}{BF}$的值;
(ii) 如图2,当$k = 2$时,求$\tan \angle CFE$的值。
答案:
22.解:
(1)证明:由条件可知∠CAD = ∠CBD = 45°.
∵点D为边AB中点,
∴CD⊥AB,
∠ACD = ∠BCD = 45° = ∠CAD = ∠CBD,
∴AD = BD = $\frac{1}{2}$AB = CD,
∴∠EDF = 90° = ∠ADC = ∠CDB,
∴∠ADE = ∠CDF.
在△AED和△CFD中,$\begin{cases}\angle ADE = \angle CDF \\ AD = CD \\ \angle EAD = \angle FCD\end{cases}$,
∴△AED≌△CFD(ASA),
∴∠AED = ∠CFD.(3分)
(2)
∵∠EDF = 90° = ∠CDB,
∴∠EDF - ∠CDF = ∠CDB - ∠CDF,即∠CDE = ∠BDF.
在△CDE和△BDF中,$\begin{cases}CD = BD \\ \angle CDE = \angle DBF\end{cases}$,
∴△CDE≌△BDF(ASA),
∴CE = BF.(4分)
(i)当k = 1时,则∠CBE = ∠ADE.
设CF = a,CE = BF = b.
由条件可知∠ECF + ∠EDF = 180°,
∴四边形DECF内接于直径为EF的圆,
如图.

∵圆周角∠CEF,∠CDF所对的弧为$\overset{\frown}{CF}$,
∴∠CEF = ∠CDF.

(1)知∠ADE = ∠CDF,
∴∠CEF = ∠CBE.
∵∠ECF = ∠BCE = 90°,
∴△CEF∽△CBE,
∴$\frac{CE}{CB}$ = $\frac{CF}{CE}$,即CE² = CF·CB,
∴b² = a(a + b),
整理,得$(\frac{a}{b})^{2}$ + $\frac{a}{b}$ - 1 = 0,
解得$\frac{a}{b}$ = $\frac{-1 + \sqrt{5}}{2}$或$\frac{a}{b}$ = $\frac{-1 - \sqrt{5}}{2}$(负值不符合题意,舍去),
∴$\frac{CF}{BF}$ = $\frac{-1 + \sqrt{5}}{2}$.(8分)
(ii)当k = 2时,则∠CBE = 2∠ADE.
如图,延长FC至点P,使CP = CF,设CE = BF = m,CP = CF = n.

tan∠CFE = $\frac{CE}{CF}$ = $\frac{m}{n}$,PE² = m² + n²,
∴EP = EF,
∴∠CEP = ∠CEF,
∴∠PEF = ∠CEP + ∠CEF = 2∠CEF,
∴∠ECF + ∠EDF = 180°,
∴四边形DECF内接于直径为EF的圆,
∴∠CEF = ∠CDE = ∠ADE,
∴∠PEF = 2∠CEF = 2∠ADE = ∠CBE.

∵∠EPF = ∠BPE,
∴△EPF∽△BPE,
∴PE² = PF·PB,
∴m² + n² = 2n(m + 2n),
整理,得$(\frac{m}{n})^{2}$ - 2$(\frac{m}{n})$ - 3 = 0,
解得$\frac{m}{n}$ = 3或$\frac{m}{n}$ = - 1(负值不符合题意,舍去),
∴tan∠CFE = 3.(12分)

查看更多完整答案,请扫码查看

关闭