2026年秒杀中考数学安徽专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年秒杀中考数学安徽专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年秒杀中考数学安徽专版》

22. 已知在四边形$ABCD$中,$BC = CD$,连接$BD$,过点$C$作$BD$的垂线交$AB$于点$E$,连接$DE$。
(1)如图 1,若$DE // BC$,求证:四边形$BCDE$是菱形。
(2)如图 2,连接$AC$,设$BD$,$AC$相交于点$F$,$DE$垂直平分线段$AC$。
① 求$\angle CED$的大小;
② 若$AF = AE$,求证:$BE = CF$。
 
答案: 22.【解析】本题是四边形综合题,考查了菱形的判定与性质、全等三角形的判定与性质、线段垂直平分线的性质等知识,熟练掌握线段垂直平分线的性质是解题的关键.
(1)利用$AAS$证明$\triangle DOE \cong \triangle BOC$,得$DE = BC$,从而得出四边形$BCDE$是平行四边形,根据$CD = CB$,即可证明结论.
(2)①根据线段垂直平分线的性质,得$AE = EC$且$DE \perp AC$,$\therefore \angle AED = \angle CED$.又$\because CD = CB$且$CE \perp BD$,$\therefore CE$垂直平分$DB$,$\therefore DE = BE$,$\therefore \angle DEC = \angle BEC$,$\therefore \angle AED = \angle CED = \angle BEC$.又$\because \angle AED + \angle CED + \angle BEC = 180^{\circ}$,$\therefore \angle CED = \frac{1}{3} × 180^{\circ} = 60^{\circ}$.
②证明:由①,得$AE = EC$,又$\because \angle AEC = \angle AED + \angle DEC = 120^{\circ}$,$\therefore \angle ACE = 30^{\circ}$.同理可得,在等腰三角形$DEB$中,$\angle EBD = 30^{\circ}$,$\therefore \angle ACE = \angle ABF = 30^{\circ}$.在$\triangle ACE$与$\triangle ABF$中,$\begin{cases} \angle ACE = \angle ABF \\ \angle CAE = \angle BAF \\ AE = AF \end{cases}$,$\therefore \triangle ABF \cong \triangle ACE(AAS)$,$\therefore AC = AB$,又$\because AE = AF$,$\therefore AB - AE = AC - AF$,即$BE = CF$.
【解题过程】
解:
(1)证明:设CE与BD交于点O,$\because CB = CD$,$CE \perp BD$,$\therefore DO = BO$. $\because DE // BC$,$\therefore \angle DEO = \angle BCO$.(1分)又$\because \angle DOE = \angle BOC$,$\therefore \triangle DOE \cong \triangle BOC(AAS)$,$\therefore DE = BC$,$\therefore$四边形$BCDE$是平行四边形.(3分)$\because CD = CB$,$\therefore$平行四边形$BCDE$是菱形.(4分)
(2)①$\because DE$垂直平分$AC$,$\therefore AE = EC$且$DE \perp AC$,$\therefore \angle AED = \angle CED$.(5分)又$\because CD = CB$且$CE \perp BD$,$\therefore CE$垂直平分$DB$,$\therefore DE = BE$,$\therefore \angle DEC = \angle BEC$,$\therefore \angle AED = \angle CED = \angle BEC$.(7分)又$\because \angle AED + \angle CED + \angle BEC = 180^{\circ}$,$\therefore \angle CED = \frac{1}{3} × 180^{\circ} = 60^{\circ}$.(8分)
②证明:由①,得$AE = EC$,又$\because \angle AEC = \angle AED + \angle DEC = 120^{\circ}$,$\therefore \angle ACE = 30^{\circ}$.同理可得,在等腰三角形$DEB$中,$\angle EBD = 30^{\circ}$,$\therefore \angle ACE = \angle ABF = 30^{\circ}$.(9分)在$\triangle ACE$与$\triangle ABF$中,$\begin{cases} \angle ACE = \angle ABF \\ \angle CAE = \angle BAF \\ AE = AF \end{cases}$,$\therefore \triangle ABF \cong \triangle ACE(AAS)$,$\therefore AC = AB$,(11分)又$\because AE = AF$,$\therefore AB - AE = AC - AF$,即$BE = CF$.(12分)
【高分点拨】 点拨:特殊四边形的判定
1.平行四边形的判定
(1)两组对边分别平行的四边形是平行四边形.
(2)两组对边分别相等的四边形是平行四边形.
(3)两组对角分别相等的四边形是平行四边形.
(4)对角线互相平分的四边形是平行四边形.
(5)一组对边平行且相等的四边形是平行四边形.
2.矩形的判定
(1)有一个角是直角的平行四边形是矩形.
(2)有三个角是直角的四边形是矩形.
(3)对角线互相平分且相等的四边形是矩形.
3.菱形的判定
(1)有一组邻边相等的平行四边形是菱形.
(2)对角线互相垂直的平行四边形是菱形.
(3)四条边都相等的四边形是菱形.
4.正方形的判定
(1)有一个角是直角的菱形是正方形.
(2)有一组邻边相等的矩形是正方形.
(3)有一组邻边相等,并且有一个角是直角的平行四边形是正方形.
(4)对角线互相垂直的矩形是正方形.
(5)对角线相等的菱形是正方形.
(6)对角线互相垂直平分且相等的四边形是正方形.

查看更多完整答案,请扫码查看

关闭