三角形相似的判定定理:三边
成比例
的两个三角形相似.
答案:
成比例
1. 如图,△ABC 和阴影三角形的顶点都在小正方形的顶点上,则与△ABC 相似的阴影三角形为 (

C
)
答案:
1. C
2. 在方格纸中,每个小方格的顶点叫做格点,以格点连线为边的图形叫做格点图形. 如图,在边长为 1 的正方形组成的网格中,试判断格点图形△ABC 与△DEF 是否相似,并说明理由.

答案:
2. 解:$\triangle ABC \sim \triangle DEF$. 理由如下:
由小方格是边长为1的正方形,根据勾股定理易得
$DE = \sqrt{2}$, $DF = 2$, $EF = \sqrt{10}$, $AB = \sqrt{5}$, $AC = \sqrt{10}$, $BC = 5$, $\therefore \frac{DE}{AB} = \frac{DF}{AC} = \frac{EF}{BC} = \frac{\sqrt{10}}{5}$,
$\therefore \triangle ABC \sim \triangle DEF$.
由小方格是边长为1的正方形,根据勾股定理易得
$DE = \sqrt{2}$, $DF = 2$, $EF = \sqrt{10}$, $AB = \sqrt{5}$, $AC = \sqrt{10}$, $BC = 5$, $\therefore \frac{DE}{AB} = \frac{DF}{AC} = \frac{EF}{BC} = \frac{\sqrt{10}}{5}$,
$\therefore \triangle ABC \sim \triangle DEF$.
3. 如图,在△ABC 和△ADE 中,$\frac{AB}{AD}=\frac{BC}{DE}=\frac{AC}{AE}$, 点 B,D,E 在一条直线上.
求证:△ABD∽△ACE.

求证:△ABD∽△ACE.
答案:
3. 证明:$\because$在$\triangle ABC$和$\triangle ADE$中,$\frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE}$,
$\therefore \triangle ABC \sim \triangle ADE$,
$\therefore \angle BAC = \angle DAE$, $\therefore \angle BAD = \angle CAE$. $\because \frac{AB}{AD} = \frac{AC}{AE}$,
$\therefore \frac{AB}{AC} = \frac{AD}{AE}$, $\therefore \triangle ABD \sim \triangle ACE$.
$\therefore \triangle ABC \sim \triangle ADE$,
$\therefore \angle BAC = \angle DAE$, $\therefore \angle BAD = \angle CAE$. $\because \frac{AB}{AD} = \frac{AC}{AE}$,
$\therefore \frac{AB}{AC} = \frac{AD}{AE}$, $\therefore \triangle ABD \sim \triangle ACE$.
4. 如图,在△ABC 中,AD 为边 BC 上的高,E,F 分别为 AB,AC 的中点.
求证:△DEF∽△ABC.

求证:△DEF∽△ABC.
答案:
4. 证明:$\because E,F$分别为$AB,AC$的中点,$\therefore EF = \frac{1}{2}BC$.
$\because AD \perp BC$, $E,F$分别为$AB,AC$的中点,
$\therefore DE = \frac{1}{2}AB$, $DF = \frac{1}{2}AC$, $\therefore \frac{DE}{AB} = \frac{DF}{AC} = \frac{EF}{BC} = \frac{1}{2}$,
$\therefore \triangle DEF \sim \triangle ABC$.
$\because AD \perp BC$, $E,F$分别为$AB,AC$的中点,
$\therefore DE = \frac{1}{2}AB$, $DF = \frac{1}{2}AC$, $\therefore \frac{DE}{AB} = \frac{DF}{AC} = \frac{EF}{BC} = \frac{1}{2}$,
$\therefore \triangle DEF \sim \triangle ABC$.
查看更多完整答案,请扫码查看