三角形相似的判定定理:两边
成比例
且夹角相等
的两个三角形相似.
答案:
成比例 夹角相等
1. 如图,能使$\triangle ABC \backsim \triangle ADE$成立的条件是 (

A.$\angle A = \angle A$
B.$\angle ADE = \angle AED$
C.$\frac{AB}{AD} = \frac{AC}{AE}$
D.$\frac{AB}{AE} = \frac{BC}{ED}$
C
)A.$\angle A = \angle A$
B.$\angle ADE = \angle AED$
C.$\frac{AB}{AD} = \frac{AC}{AE}$
D.$\frac{AB}{AE} = \frac{BC}{ED}$
答案:
1.C
2. 如图,$\angle 1 = \angle 2$,那么添加下列的一个条件后,仍无法判定$\triangle ABC \backsim \triangle ADE$的是 (

A.$\frac{AB}{AD} = \frac{AC}{AE}$
B.$\angle B = \angle D$
C.$\frac{AB}{AD} = \frac{BC}{DE}$
D.$\angle C = \angle AED$
C
)A.$\frac{AB}{AD} = \frac{AC}{AE}$
B.$\angle B = \angle D$
C.$\frac{AB}{AD} = \frac{BC}{DE}$
D.$\angle C = \angle AED$
答案:
2.C
3. 如图,在$\triangle ABC$中,$D$是$AB$上一点,且$AD = 1$,$AB = 3$,$AC = \sqrt{3}$. 求证:$\triangle ACD \backsim \triangle ABC$.

答案:
∵ $AD = 1$,$AB = 3$,$AC = \sqrt{3}$,
∴ $\frac{AC}{AB} = \frac{\sqrt{3}}{3}$,$\frac{AD}{AC} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$,
∴ $\frac{AC}{AB} = \frac{AD}{AC}$。
∴ $\triangle ACD \sim \triangle ABC$。
3. 证明:
∵ $AD = 1$,$AB = 3$,$AC = \sqrt{3}$,
∴ $\frac{AC}{AB} = \frac{\sqrt{3}}{3}$,$\frac{AD}{AC} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$,
∴ $\frac{AC}{AB} = \frac{AD}{AC}$。
又
∵ $\angle A=\angle A$,
∵ $\angle A=\angle A$,
∴ $\triangle ACD \sim \triangle ABC$。
4. 如图,将$\triangle ABC$绕点$A$顺时针旋转得到$\triangle ADE$,点$D$与点$B$对应,连接$BD$,$CE$. 求证:$\triangle ABD \backsim \triangle ACE$.

答案:
∵ $\triangle ABC$ 绕点 $A$ 旋转得到 $\triangle ADE$,
∴ $AB = AD$,$AC = AE$,$\angle BAD=\angle CAE$,
∴ $\frac{AB}{AC} = \frac{AD}{AE}$,
∴ $\triangle ABD \sim \triangle ACE$。
4. 证明:
∵ $\triangle ABC$ 绕点 $A$ 旋转得到 $\triangle ADE$,
∴ $AB = AD$,$AC = AE$,$\angle BAD=\angle CAE$,
∴ $\frac{AB}{AC} = \frac{AD}{AE}$,
∴ $\triangle ABD \sim \triangle ACE$。
5.(教材变式题)如图,在$4 × 3$的正方形方格中,$\triangle ABC$和$\triangle DEC$的顶点都在边长为$1$的小正方形的顶点上.
(1)填空:$\angle ABC =$_________$^{\circ}$,$BC =$
(2)判断$\triangle ABC$与$\triangle CED$是否相似,并证明你的结论.

(1)填空:$\angle ABC =$_________$^{\circ}$,$BC =$
$2\sqrt{2}$
;(2)判断$\triangle ABC$与$\triangle CED$是否相似,并证明你的结论.
答案:
5.
(1)135 $2\sqrt{2}$
(2)解:相似.证明如下:
$\because AB = 2,BC = 2\sqrt{2},CE = \sqrt{2},DE = 2$
$\therefore \frac{AB}{CE} = \frac{2}{\sqrt{2}} = \sqrt{2},\frac{BC}{DE} = \frac{2\sqrt{2}}{2} = \sqrt{2},\therefore \frac{AB}{CE} = \frac{BC}{DE}$
又$\because \angle ABC = \angle CED = 135^{\circ},\therefore \triangle ABC \sim \triangle CED$
(1)135 $2\sqrt{2}$
(2)解:相似.证明如下:
$\because AB = 2,BC = 2\sqrt{2},CE = \sqrt{2},DE = 2$
$\therefore \frac{AB}{CE} = \frac{2}{\sqrt{2}} = \sqrt{2},\frac{BC}{DE} = \frac{2\sqrt{2}}{2} = \sqrt{2},\therefore \frac{AB}{CE} = \frac{BC}{DE}$
又$\because \angle ABC = \angle CED = 135^{\circ},\therefore \triangle ABC \sim \triangle CED$
查看更多完整答案,请扫码查看