23.(12分)△ABC是等腰直角三角形,BC = AB,点A在x轴负半轴上,直角顶点B在y轴上,点C在x轴上方.
(1)如图①,点B的坐标是(0,1).
①若∠ABO = 60°,则AB = ______;
②若点A的坐标是(-3,0),求点C的坐标.
(2)如图②,过点C作CD⊥y轴于点D,请写出线段OA,OD,CD之间的数量关系,并说明理由.
(3)如图③,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于点F,问CF与AE有怎样的数量关系?并说明理由.

(1)如图①,点B的坐标是(0,1).
①若∠ABO = 60°,则AB = ______;
②若点A的坐标是(-3,0),求点C的坐标.
(2)如图②,过点C作CD⊥y轴于点D,请写出线段OA,OD,CD之间的数量关系,并说明理由.
(3)如图③,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于点F,问CF与AE有怎样的数量关系?并说明理由.
答案:
(1)①2 ②解:如答图①,过点C作CH⊥y轴于点H,
∴∠BHC = 90° = ∠AOB.
∵A(-3,0),B(0,1),
∴OA = 3,OB = 1.
∵∠ABC = 90°,
∴∠ABO + ∠CBH = 90°.
∵∠ABO + ∠BAO = 90°,
∴∠CBH = ∠BAO. 又
∵BA = CB,
∴△ABO≌△BCH(AAS),
∴CH = OB = 1,BH = OA = 3,
∴OH = OB + BH = 4,
∴点C的坐标为(-1,4).
(2)解:OA = CD + OD.理由如下:
∵CD⊥y轴,
∴∠BDC = 90° = ∠AOB.
∵∠ABC = 90°,
∴∠ABO + ∠CBD = 90°.
∵∠ABO + ∠BAO = 90°,
∴∠CBD = ∠BAO. 又
∵BA = CB,
∴△ABO≌△BCD(AAS),
∴CD = OB,OA = BD,
∴OA = BD = OB + OD = CD + OD.
(3)解:CF = $\frac{1}{2}$AE.理由如下: 如答图②,延长CF与AB相交于点G.
∵∠ABC = 90°,
∴∠CBG = 90°,
∴∠BCG + ∠G = 90°.
∵CF⊥x轴,
∴∠CFA = ∠GFA = 90°,
∴∠GAF + ∠G = 90°,
∴∠BCG = ∠GAF. 又
∵AB = CB,∠ABE = ∠CBG = 90°,
∴△ABE≌△CBG(ASA),
∴AE = CG.
∵x轴平分∠BAC,
∴∠CAF = ∠GAF. 又
∵∠CFA = ∠GFA,AF = AF,
∴△AFC≌△AFG(ASA),
∴CF = GF,
∴CF = $\frac{1}{2}$CG = $\frac{1}{2}$AE.
(1)①2 ②解:如答图①,过点C作CH⊥y轴于点H,
∴∠BHC = 90° = ∠AOB.
∵A(-3,0),B(0,1),
∴OA = 3,OB = 1.
∵∠ABC = 90°,
∴∠ABO + ∠CBH = 90°.
∵∠ABO + ∠BAO = 90°,
∴∠CBH = ∠BAO. 又
∵BA = CB,
∴△ABO≌△BCH(AAS),
∴CH = OB = 1,BH = OA = 3,
∴OH = OB + BH = 4,
∴点C的坐标为(-1,4).
(2)解:OA = CD + OD.理由如下:
∵CD⊥y轴,
∴∠BDC = 90° = ∠AOB.
∵∠ABC = 90°,
∴∠ABO + ∠CBD = 90°.
∵∠ABO + ∠BAO = 90°,
∴∠CBD = ∠BAO. 又
∵BA = CB,
∴△ABO≌△BCD(AAS),
∴CD = OB,OA = BD,
∴OA = BD = OB + OD = CD + OD.
(3)解:CF = $\frac{1}{2}$AE.理由如下: 如答图②,延长CF与AB相交于点G.
∵∠ABC = 90°,
∴∠CBG = 90°,
∴∠BCG + ∠G = 90°.
∵CF⊥x轴,
∴∠CFA = ∠GFA = 90°,
∴∠GAF + ∠G = 90°,
∴∠BCG = ∠GAF. 又
∵AB = CB,∠ABE = ∠CBG = 90°,
∴△ABE≌△CBG(ASA),
∴AE = CG.
∵x轴平分∠BAC,
∴∠CAF = ∠GAF. 又
∵∠CFA = ∠GFA,AF = AF,
∴△AFC≌△AFG(ASA),
∴CF = GF,
∴CF = $\frac{1}{2}$CG = $\frac{1}{2}$AE.
24.(12分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x轴、y轴的距离中的最大值等于点Q到x轴、y轴的距离中的最大值,则称P,Q两点为“等距点”.
(1)已知点A的坐标为(-3,1).
①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是
②若点B的坐标为(m,m + 6),且A,B两点为“等距点”,则点B的坐标为
(2)若$T_1(-1,-k - 3),T_2(4,4k - 3)$两点为“等距点”,求k的值.
(1)已知点A的坐标为(-3,1).
①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是
E,F
;②若点B的坐标为(m,m + 6),且A,B两点为“等距点”,则点B的坐标为
(-3,3)
.(2)若$T_1(-1,-k - 3),T_2(4,4k - 3)$两点为“等距点”,求k的值.
解:$T_1(-1,-k - 3)$,$T_2(4,4k - 3)$两点为等距点.若$\vert 4k - 3\vert \leq 4$,则$4 = -k - 3$或$-4 = -k - 3$, 解得$k = -7$(舍去)或$k = 1$. 若$\vert 4k - 3\vert > 4$,则$\vert 4k - 3\vert = \vert -k - 3\vert$,解得$k = 0$(舍去)或$k = 2$.根据“等距点”的定义知$k = 1$或$k = 2$符合题意.即$k$的值是$1$或$2$.
答案:
(1)①E,F ②(-3,3)
(2)解:$T_1(-1,-k - 3)$,$T_2(4,4k - 3)$两点为等距点.若$\vert 4k - 3\vert \leq 4$,则$4 = -k - 3$或$-4 = -k - 3$, 解得$k = -7$(舍去)或$k = 1$. 若$\vert 4k - 3\vert > 4$,则$\vert 4k - 3\vert = \vert -k - 3\vert$,解得$k = 0$(舍去)或$k = 2$.根据“等距点”的定义知$k = 1$或$k = 2$符合题意.即$k$的值是$1$或$2$.
(1)①E,F ②(-3,3)
(2)解:$T_1(-1,-k - 3)$,$T_2(4,4k - 3)$两点为等距点.若$\vert 4k - 3\vert \leq 4$,则$4 = -k - 3$或$-4 = -k - 3$, 解得$k = -7$(舍去)或$k = 1$. 若$\vert 4k - 3\vert > 4$,则$\vert 4k - 3\vert = \vert -k - 3\vert$,解得$k = 0$(舍去)或$k = 2$.根据“等距点”的定义知$k = 1$或$k = 2$符合题意.即$k$的值是$1$或$2$.
查看更多完整答案,请扫码查看