18. (本小题 10 分)
(1)先化简,再求值:已知 $a,b$ 满足 $b - a = -2025$,求代数式 $[(a + b)(a - b)-(a - b)^{2}-2b(b - a)]÷ 4b$ 的值.
(2)解方程:$(2x + 3)(x - 4)-(x + 2)(x - 3)= x^{2}+6$.
(1)先化简,再求值:已知 $a,b$ 满足 $b - a = -2025$,求代数式 $[(a + b)(a - b)-(a - b)^{2}-2b(b - a)]÷ 4b$ 的值.
(2)解方程:$(2x + 3)(x - 4)-(x + 2)(x - 3)= x^{2}+6$.
答案:
(1)原式=[(a² - b²)-(a² - 2ab + b²)-2b² + 2ab]÷4b
=[a² - b² - a² + 2ab - b² - 2b² + 2ab]÷4b
=(-4b² + 4ab)÷4b
=4b(a - b)÷4b
=a - b
∵b - a = -2025,
∴a - b = 2025,原式=2025
(2)(2x + 3)(x - 4)-(x + 2)(x - 3)=x² + 6
(2x² - 8x + 3x - 12)-(x² - 3x + 2x - 6)=x² + 6
(2x² - 5x - 12)-(x² - x - 6)=x² + 6
2x² - 5x - 12 - x² + x + 6 = x² + 6
x² - 4x - 6 = x² + 6
-4x = 12
x = -3
(1)原式=[(a² - b²)-(a² - 2ab + b²)-2b² + 2ab]÷4b
=[a² - b² - a² + 2ab - b² - 2b² + 2ab]÷4b
=(-4b² + 4ab)÷4b
=4b(a - b)÷4b
=a - b
∵b - a = -2025,
∴a - b = 2025,原式=2025
(2)(2x + 3)(x - 4)-(x + 2)(x - 3)=x² + 6
(2x² - 8x + 3x - 12)-(x² - 3x + 2x - 6)=x² + 6
(2x² - 5x - 12)-(x² - x - 6)=x² + 6
2x² - 5x - 12 - x² + x + 6 = x² + 6
x² - 4x - 6 = x² + 6
-4x = 12
x = -3
19. (本小题 6 分)
已知有理数 $a,b$ 满足 $(a + b)^{2}= 1,(a - b)^{2}= 9$,求 $a^{2}+b^{2}-ab$ 的值.
已知有理数 $a,b$ 满足 $(a + b)^{2}= 1,(a - b)^{2}= 9$,求 $a^{2}+b^{2}-ab$ 的值.
答案:
7
查看更多完整答案,请扫码查看