2025年文涛书业假期作业快乐暑假七年级数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年文涛书业假期作业快乐暑假七年级数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
10. 若$(x-ay)(x+ay)=x^{2}-16y^{2}$,则$a=$
$\pm 4$
.
答案:
$\pm 4$
11. 如图,点O在直线AB上且$OC⊥OD$,若$∠COA=38^{\circ }$,则$∠DOB$的大小为

$52^{\circ}$
.
答案:
$52^{\circ}$
12. 如图,在$\triangle ABC$中,$AB=6cm$,DE是线段AC的垂直平分线,则$BD+CD=$

$6\mathrm{cm}$
.
答案:
$6\mathrm{cm}$
13. 如图,点E、D分别在线段AB、AC上,BD、CE相交于点O,$AD=AE$,需使$\triangle ABD\cong \triangle ACE$,需添加的一个条件是

$\angle B=\angle C$(答案不唯一)
.
答案:
$\angle B=\angle C$(答案不唯一)
14. 已知$10^{m}=2$,$10^{n}=3$,求$10^{3m+2n}$的值.
解:$10^{3m + 2n}=10^{3m}\cdot 10^{2n}=(10^{m})^{3}\cdot (10^{n})^{2}$,
$\because 10^{m}=2$,$10^{n}=3$,$\therefore$原式$=2^{3}× 3^{2}=$
解:$10^{3m + 2n}=10^{3m}\cdot 10^{2n}=(10^{m})^{3}\cdot (10^{n})^{2}$,
$\because 10^{m}=2$,$10^{n}=3$,$\therefore$原式$=2^{3}× 3^{2}=$
72
。
答案:
解:$10^{3m + 2n}=10^{3m}\cdot 10^{2n}=(10^{m})^{3}\cdot (10^{n})^{2}$,
$\because 10^{m}=2$,$10^{n}=3$,$\therefore$原式$=2^{3}\times 3^{2}=72$。
$\because 10^{m}=2$,$10^{n}=3$,$\therefore$原式$=2^{3}\times 3^{2}=72$。
15. 如图,$BD⊥AC$于点D,$EF⊥AC$于点F,$∠AMD=∠AGF$,$∠1=∠2=35^{\circ }$.
(1)求$∠GFC$的度数;
(2)求证:$DM// BC$.

(1)解:$\because BD\perp AC$,$EF\perp AC$,$\therefore \angle EFC = 90^{\circ}$,$BD// EF$,$\therefore \angle EFG=\angle 1 = 35^{\circ}$,
$\therefore \angle GFC = 90^{\circ}+35^{\circ}=$
(2)证明:$\because BD// EF$,$\therefore \angle 2=\angle CBD$,又$\angle 1=\angle 2$,$\therefore \angle 1=\angle CBD$,$\therefore GF// BC$,
$\because \angle AMD=\angle AGF$,
$\therefore DM// GF$,$\therefore DM// BC$。
(1)求$∠GFC$的度数;
(2)求证:$DM// BC$.
(1)解:$\because BD\perp AC$,$EF\perp AC$,$\therefore \angle EFC = 90^{\circ}$,$BD// EF$,$\therefore \angle EFG=\angle 1 = 35^{\circ}$,
$\therefore \angle GFC = 90^{\circ}+35^{\circ}=$
125°
。(2)证明:$\because BD// EF$,$\therefore \angle 2=\angle CBD$,又$\angle 1=\angle 2$,$\therefore \angle 1=\angle CBD$,$\therefore GF// BC$,
$\because \angle AMD=\angle AGF$,
$\therefore DM// GF$,$\therefore DM// BC$。
答案:
(1)解:$\because BD\perp AC$,$EF\perp AC$,$\therefore \angle EFC = 90^{\circ}$,$BD// EF$,$\therefore \angle EFG=\angle 1 = 35^{\circ}$,
$\therefore \angle GFC = 90^{\circ}+35^{\circ}=125^{\circ}$。
(2)证明:$\because BD// EF$,$\therefore \angle 2=\angle CBD$,又$\angle 1=\angle 2$,$\therefore \angle 1=\angle CBD$,$\therefore GF// BC$,
$\because \angle AMD=\angle AGF$,
$\therefore DM// GF$,$\therefore DM// BC$。
$\therefore \angle GFC = 90^{\circ}+35^{\circ}=125^{\circ}$。
(2)证明:$\because BD// EF$,$\therefore \angle 2=\angle CBD$,又$\angle 1=\angle 2$,$\therefore \angle 1=\angle CBD$,$\therefore GF// BC$,
$\because \angle AMD=\angle AGF$,
$\therefore DM// GF$,$\therefore DM// BC$。
16. 如图,在$\triangle ABC$中,$∠C=90^{\circ }$,点D是AB边上一点,$DM⊥AB$,且$DM=AC$,过点M作$ME// BC$交AB于点E. 求证:$\triangle ABC\cong \triangle MED$.

证明:在$\triangle ABC$和$\triangle MED$中,
$\because BC// EM$,$\therefore$
$\because DM\perp AB$,$\therefore$
$\therefore$
又$\because$
证明:在$\triangle ABC$和$\triangle MED$中,
$\because BC// EM$,$\therefore$
$\angle MED=\angle B$
,$\because DM\perp AB$,$\therefore$
$\angle MDE = 90^{\circ}$
,$\therefore$
$\angle C=\angle MDE$
,又$\because$
$AC = MD$
,$\therefore \triangle ABC\cong \triangle MED$(AAS
)。
答案:
证明:在$\triangle ABC$和$\triangle MED$中,
$\because BC// EM$,$\therefore \angle MED=\angle B$,
$\because DM\perp AB$,$\therefore \angle MDE = 90^{\circ}$,
$\therefore \angle C=\angle MDE$,
又$\because AC = MD$,$\therefore \triangle ABC\cong \triangle MED(AAS)$。
$\because BC// EM$,$\therefore \angle MED=\angle B$,
$\because DM\perp AB$,$\therefore \angle MDE = 90^{\circ}$,
$\therefore \angle C=\angle MDE$,
又$\because AC = MD$,$\therefore \triangle ABC\cong \triangle MED(AAS)$。
查看更多完整答案,请扫码查看