2025年教材帮七年级数学下册苏科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年教材帮七年级数学下册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1(知识点2)三元一次方程组$\begin{cases}x - y = 1,\\y - z = 1,\\x + z = 6\end{cases}$的解是( )
A.$\begin{cases}x = 2,\\y = 3,\\z = 4\end{cases}$
B.$\begin{cases}x = 2,\\y = 4,\\z = 3\end{cases}$
C.$\begin{cases}x = 3,\\y = 2,\\z = 4\end{cases}$
D.$\begin{cases}x = 4,\\y = 3,\\z = 2\end{cases}$
A.$\begin{cases}x = 2,\\y = 3,\\z = 4\end{cases}$
B.$\begin{cases}x = 2,\\y = 4,\\z = 3\end{cases}$
C.$\begin{cases}x = 3,\\y = 2,\\z = 4\end{cases}$
D.$\begin{cases}x = 4,\\y = 3,\\z = 2\end{cases}$
答案:
1. D
2(知识点2)(盐城期末)由方程组$\begin{cases}2x + y = 7,\\2y + z = 8,\\2z + x = 9\end{cases}$可以得到$x + y + z$的值为( )
A.8
B.9
C.10
D.11
A.8
B.9
C.10
D.11
答案:
2. A $\begin{cases}2x + y = 7, &①\\2y + z = 8, &②\\2z + x = 9. &③\end{cases}$
① + ② + ③,得$3x + 3y + 3z = 24$,所以$x + y + z = 8$. 故选 A.
① + ② + ③,得$3x + 3y + 3z = 24$,所以$x + y + z = 8$. 故选 A.
3(知识点2)若方程组$\begin{cases}x + y - z = 3,\\y + z - x = 5,\\z + x - y = 7\end{cases}$的解使$kx + 2y - z = 7$,则$k$的值是( )
A.1
B.2
C.-2
D.$\frac{1}{2}$
A.1
B.2
C.-2
D.$\frac{1}{2}$
答案:
3. A $\begin{cases}x + y - z = 3, &①\\y + z - x = 5, &②\\z + x - y = 7. &③\end{cases}$
① + ② + ③,得$x + y + z = 15$. ④
④ - ①,得$2z = 12$,解得$z = 6$.
④ - ②,得$2x = 10$,解得$x = 5$.
④ - ③,得$2y = 8$,解得$y = 4$.
把$x = 5,y = 4,z = 6$代入$kx + 2y - z = 7$,得$5k + 8 - 6 = 7$,即$5k = 5$,解得$k = 1$. 故选 A.
① + ② + ③,得$x + y + z = 15$. ④
④ - ①,得$2z = 12$,解得$z = 6$.
④ - ②,得$2x = 10$,解得$x = 5$.
④ - ③,得$2y = 8$,解得$y = 4$.
把$x = 5,y = 4,z = 6$代入$kx + 2y - z = 7$,得$5k + 8 - 6 = 7$,即$5k = 5$,解得$k = 1$. 故选 A.
4(知识点2)若$(2x - 4)^2 + (x + y)^2 + |4z - y| = 0$,则$x + y + z$等于( )
A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.2
D.-2
A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.2
D.-2
答案:
4. A 因为$(2x - 4)^2 + (x + y)^2 + |4z - y| = 0$,
所以$\begin{cases}2x - 4 = 0,\\x + y = 0,\\4z - y = 0,\end{cases}$解得$\begin{cases}x = 2,\\y = - 2,\\z = - \frac{1}{2},\end{cases}$
则$x + y + z = 2 - 2 - \frac{1}{2}= - \frac{1}{2}$.
所以$\begin{cases}2x - 4 = 0,\\x + y = 0,\\4z - y = 0,\end{cases}$解得$\begin{cases}x = 2,\\y = - 2,\\z = - \frac{1}{2},\end{cases}$
则$x + y + z = 2 - 2 - \frac{1}{2}= - \frac{1}{2}$.
5(知识点2)(新定义题)对于有理数$x,y$,定义新运算$x * y = ax - by + c$. 其中$a,b,c$是常数,等式右边是常规的加减法与乘法运算. 已知$1 * 2 = 9,(-3) * 3 = 6,0 * 1 = 2$,求$(-2) * 5$的值.
答案:
5. 解:由题意,得$\begin{cases}a - 2b + c = 9,\\- 3a - 3b + c = 6,\\- b + c = 2,\end{cases}$解得$\begin{cases}a = 2,\\b = - 5,\\c = - 3.\end{cases}$
故此新运算为$x*y = 2x + 5y - 3$.
所以$(- 2)*5 = 2\times(- 2)+5\times5 - 3 = 18$.
故此新运算为$x*y = 2x + 5y - 3$.
所以$(- 2)*5 = 2\times(- 2)+5\times5 - 3 = 18$.
6 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密). 已知加密规则为:明文$x,y,z$对应密文$2x + 3y,3x + 4y,3z$. 例如:明文1,2,3对应密文8,11,9. 当接收方收到密文12,17,27时,则解密得到的明文为_______.
答案:
6. 3,2,9 根据题意可列方程组$\begin{cases}2x + 3y = 12,\\3x + 4y = 17,\\3z = 27,\end{cases}$解得$\begin{cases}x = 3,\\y = 2,\\z = 9.\end{cases}$故解密得到的明文为 3,2,9.
7 解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组. 下面,我们就来解一个三元一次方程组:
解方程组$\begin{cases}x + y + z = 2, ①\\2x + 3y - z = 8, ②\\3x - 2y + z = 3. ③\end{cases}$
小曹同学的部分解答过程如下:
解:______ + ______,得$3x + 4y = 10$. ④
______ + ______,得$5x + y = 11$. ⑤
______与______联立,得方程组$\begin{cases}3x + 4y = 10,\\5x + y = 11,\end{cases}$ ______.
(1)请补全小曹同学的解答过程.
(2 ) 若$m,n,p,q$满足方程组$\begin{cases}m + n + p + q = 4,\\2(m + n) + 3p - q = 16,\\3(m + n) - 2p + q = 6,\end{cases}$则$m + n - 2p + q =$______.
解方程组$\begin{cases}x + y + z = 2, ①\\2x + 3y - z = 8, ②\\3x - 2y + z = 3. ③\end{cases}$
小曹同学的部分解答过程如下:
解:______ + ______,得$3x + 4y = 10$. ④
______ + ______,得$5x + y = 11$. ⑤
______与______联立,得方程组$\begin{cases}3x + 4y = 10,\\5x + y = 11,\end{cases}$ ______.
(1)请补全小曹同学的解答过程.
(2 ) 若$m,n,p,q$满足方程组$\begin{cases}m + n + p + q = 4,\\2(m + n) + 3p - q = 16,\\3(m + n) - 2p + q = 6,\end{cases}$则$m + n - 2p + q =$______.
答案:
7. 解:
(1)解方程组$\begin{cases}x + y + z = 2, &①\\2x + 3y - z = 8, &②\\3x - 2y + z = 3. &③\end{cases}$
小曹同学的部分解答过程如下:
解:① + ②,得$3x + 4y = 10$. ④
② + ③,得$5x + y = 11$. ⑤
④与⑤联立,得方程组$\begin{cases}3x + 4y = 10,\\5x + y = 11,\end{cases}$解得$\begin{cases}x = 2,\\y = 1.\end{cases}$
把$\begin{cases}x = 2,\\y = 1\end{cases}$代入①,得$2 + 1 + z = 2$,解得$z = - 1$.
所以原方程组的解是$\begin{cases}x = 2,\\y = 1,\\z = - 1.\end{cases}$
(2) - 2 提示:$\begin{cases}m + n + p + q = 4, &①\\2(m + n)+3p - q = 16, &②\\3(m + n)-2p + q = 6. &③\end{cases}$
② - ①×2,得$p - 3q = 8$. ④
③ - ①×3,得$- 5p - 2q = - 6$. ⑤
④与⑤联立,得方程组$\begin{cases}p - 3q = 8,\\- 5p - 2q = - 6,\end{cases}$解得$\begin{cases}p = 2,\\q = - 2.\end{cases}$
把$\begin{cases}p = 2,\\q = - 2\end{cases}$代入①,得$m + n = 4$.
所以$m + n - 2p + q = - 2$.
(1)解方程组$\begin{cases}x + y + z = 2, &①\\2x + 3y - z = 8, &②\\3x - 2y + z = 3. &③\end{cases}$
小曹同学的部分解答过程如下:
解:① + ②,得$3x + 4y = 10$. ④
② + ③,得$5x + y = 11$. ⑤
④与⑤联立,得方程组$\begin{cases}3x + 4y = 10,\\5x + y = 11,\end{cases}$解得$\begin{cases}x = 2,\\y = 1.\end{cases}$
把$\begin{cases}x = 2,\\y = 1\end{cases}$代入①,得$2 + 1 + z = 2$,解得$z = - 1$.
所以原方程组的解是$\begin{cases}x = 2,\\y = 1,\\z = - 1.\end{cases}$
(2) - 2 提示:$\begin{cases}m + n + p + q = 4, &①\\2(m + n)+3p - q = 16, &②\\3(m + n)-2p + q = 6. &③\end{cases}$
② - ①×2,得$p - 3q = 8$. ④
③ - ①×3,得$- 5p - 2q = - 6$. ⑤
④与⑤联立,得方程组$\begin{cases}p - 3q = 8,\\- 5p - 2q = - 6,\end{cases}$解得$\begin{cases}p = 2,\\q = - 2.\end{cases}$
把$\begin{cases}p = 2,\\q = - 2\end{cases}$代入①,得$m + n = 4$.
所以$m + n - 2p + q = - 2$.
8(情境创新)如图所示,三个天平的托盘中形状相同的物体质量相等. 图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )

A.3个○
B.4个○
C.5个○
D.6个○
A.3个○
B.4个○
C.5个○
D.6个○
答案:
8. C 设每个○、□、△的质量分别为$x,y,z$.
由题意得$\begin{cases}5x + 2y = x + 3z,\\3x + 3y = 2y + 2z,\end{cases}$解得$\begin{cases}y = x,\\z = 2x.\end{cases}$
所以第三个天平左端的质量可表示为$x + 2y + z = x + 2x + 2x = 5x$.
所以结合选项,要使第三个天平也保持平衡,则需在它的右盘中放置 5 个○.
由题意得$\begin{cases}5x + 2y = x + 3z,\\3x + 3y = 2y + 2z,\end{cases}$解得$\begin{cases}y = x,\\z = 2x.\end{cases}$
所以第三个天平左端的质量可表示为$x + 2y + z = x + 2x + 2x = 5x$.
所以结合选项,要使第三个天平也保持平衡,则需在它的右盘中放置 5 个○.
查看更多完整答案,请扫码查看