2026年启东中学作业本九年级数学下册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年启东中学作业本九年级数学下册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年启东中学作业本九年级数学下册苏科版》

1. 如图,在$△ ABC$中,点$D$,$E$分别在边$AC$,$AB$上,$BD$与$CE$交于点$F$. 若$BF = 5\sqrt{3}$,$CF = 2\sqrt{3}$,$∠ ABD = ∠ ACE$,$AD = 2CD$,则线段$EF$的长为
$\frac{5\sqrt{3}}{2}$
.

答案:
1. $\frac{5\sqrt{3}}{2}$ 点拨:设 $DF = x$,$\because ∠BFE = ∠CFD$,$∠ABD = ∠ACE$,$\therefore △EBF ∽ △DCF$,
$\therefore \frac{EF}{DF} = \frac{BF}{CF} = \frac{5\sqrt{3}}{2\sqrt{3}} = \frac{5}{2}$,则 $EF = \frac{5}{2}DF = \frac{5}{2}x$。
$\because AD = 2CD$,$\therefore \frac{CD}{CA} = \frac{1}{3}$。
如答图,过点 $A$ 作 $AG // BD$ 交 $CE$ 的延长线于点 $G$,
第1题答图
$\therefore ∠CDF = ∠CAG$,$∠CFD = ∠CGA$,
$\therefore △CDF ∽ △CAG$,$\therefore \frac{DF}{AG} = \frac{CF}{CG} = \frac{CD}{CA} = \frac{1}{3}$,
$\therefore AG = 3DF = 3x$,$CG = 3CF = 6\sqrt{3}$,
$\therefore EG = CG - CF - EF = 4\sqrt{3} - \frac{5}{2}x$。
$\because AG // BF$,$\therefore ∠AGE = ∠BFE$,$∠GAE = ∠FBE$,
$\therefore △AGE ∽ △BFE$,
$\therefore \frac{AG}{BF} = \frac{EG}{EF}$,即 $\frac{3x}{5\sqrt{3}} = \frac{4\sqrt{3} - \frac{5}{2}x}{\frac{5}{2}x}$,
解得 $x = \sqrt{3}$(负值已舍去),$\therefore EF = \frac{5}{2}x = \frac{5\sqrt{3}}{2}$。
2. 如图,在$Rt△ ABC$中,$∠ BAC = 90^{\circ}$,$AB = 3$,$AC = 4$,$P$为$BC$上任意一点,连接$PA$,以$PA$,$PC$为邻边作平行四边形$PAQC$,连接$PQ$,则$PQ$的最小值为
$\frac{12}{5}$
.
答案: 2. $\frac{12}{5}$
3. 如图,在菱形$ABCD$中,点$G$在边$CD$上,连接$AG$并延长交$BC$的延长线于点$F$,连接$BD$交$AF$于点$E$,连接$CE$.
(1) 若$BE = BC$,$∠ ABC = 80^{\circ}$,请直接写出$∠ DAE$的度数;
(2) 求证:$EC^{2} = EF · EG$;
(3) 若$AB = 6$,$\frac{CE}{EG} = 3$,求$CF$的长.
答案: 3.
(1) 解: $\because$ 四边形 $ABCD$ 是菱形,$BE = BC$,
$\therefore AB = BC = BE$,$AD // BC$,$∠ABD = \frac{1}{2}∠ABC = 40^{\circ}$,
$\therefore ∠BAD = 180^{\circ} - ∠ABC = 180^{\circ} - 80^{\circ} = 100^{\circ}$,$∠BAE = \frac{180^{\circ} - ∠ABE}{2} = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$,
$\therefore ∠DAE = ∠BAD - ∠BAE = 100^{\circ} - 70^{\circ} = 30^{\circ}$。
(2) 证明: $\because$ 四边形 $ABCD$ 是菱形,
$\therefore DA = DC$,$∠ADE = ∠CDE$。
又 $\because DE = DE$,$\therefore △ADE ≌ △CDE(SAS)$,
$\therefore ∠DAF = ∠DCE$。
又 $\because AD // BC$,$\therefore ∠DAF = ∠F$,$\therefore ∠DCE = ∠F$。
又 $\because ∠CEF = ∠GEC$,$\therefore △CEG ∽ △FEC$,
$\therefore \frac{GE}{EC} = \frac{EC}{EF}$,即 $EC^{2} = EF · EG$。
(3) 解: 在菱形 $ABCD$ 中,$AD = AB = 6$,
设 $GE = a$,则 $AE = CE = 3a$,
$\because EC^{2} = EF · EG$,$\therefore EF = 9a$,
$\therefore AG = AE + EG = 3a + a = 4a$,
$FG = FE - EG = 9a - a = 8a$。
又 $\because AD // BC$,$\therefore ∠ADG = ∠DCF$,$∠DAF = ∠F$,
$\therefore △ADG ∽ △FCG$,$\therefore \frac{CF}{AD} = \frac{FG}{AG} = \frac{8a}{4a} = 2$,
$\therefore CF = 2AD = 2 × 6 = 12$。

查看更多完整答案,请扫码查看

关闭