2025年53精准练七年级数学下册北师大版山西专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年53精准练七年级数学下册北师大版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第7页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
1. 计算:$-x\cdot(-y^{2})^{3}\cdot(y^{3})^{3}$.
答案:
解:原式$=x\cdot(y^{2})^{3}\cdot(y^{3})^{3}=xy^{6 + 9}=xy^{15}$.
2. 计算:$[(a + 2b)^{2}]^{3}\cdot(-a - 2b)+(a + 2b)\cdot[(a + 2b)^{3}]^{2}$.
答案:
解:原式$=-(a + 2b)^{6}\cdot(a + 2b)+(a + 2b)\cdot(a + 2b)^{6}=-(a + 2b)^{7}+(a + 2b)^{7}=0$.
3. 计算:$(-a^{m + 1})^{3}\div[(a^{m})^{3}\cdot a]$.
答案:
解:原式$=-a^{3m + 3}\div a^{m + 1}=-a^{3m + 3-(m + 1)}=-a^{2}$.
4. 先化简,再求值:$a^{3}\cdot(-b^{3})^{2}+\left(-\dfrac{1}{2}ab^{2}\right)^{3}$,其中$a = \dfrac{1}{4}$,$b = 2$.
答案:
解:$a^{3}\cdot(-b^{3})^{2}+\left(-\dfrac{1}{2}ab^{2}\right)^{3}$
$=a^{3}\cdot b^{6}+\left(-\dfrac{1}{8}a^{3}b^{6}\right)$
$=\dfrac{7}{8}a^{3}b^{6}$.
当$a=\dfrac{1}{4}$,$b = 2$时,
原式$=\dfrac{7}{8}\times\left(\dfrac{1}{4}\right)^{3}\times2^{6}=\dfrac{7}{8}\times\dfrac{1}{64}\times64=\dfrac{7}{8}$.
$=a^{3}\cdot b^{6}+\left(-\dfrac{1}{8}a^{3}b^{6}\right)$
$=\dfrac{7}{8}a^{3}b^{6}$.
当$a=\dfrac{1}{4}$,$b = 2$时,
原式$=\dfrac{7}{8}\times\left(\dfrac{1}{4}\right)^{3}\times2^{6}=\dfrac{7}{8}\times\dfrac{1}{64}\times64=\dfrac{7}{8}$.
5. 计算:
(1)$\left(2\dfrac{2}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(-\dfrac{1}{2}\right)^{12}$;
(2)$\left(-\dfrac{1}{4}\right)^{2023}\times4^{2024}$.
(1)$\left(2\dfrac{2}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(-\dfrac{1}{2}\right)^{12}$;
(2)$\left(-\dfrac{1}{4}\right)^{2023}\times4^{2024}$.
答案:
解:
(1)$\left(2\dfrac{2}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(-\dfrac{1}{2}\right)^{12}$
$=\left(\dfrac{12}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(\dfrac{1}{2}\right)^{12}$
$=\left(\dfrac{12}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(\dfrac{1}{2}\right)^{11}\times\dfrac{1}{2}$
$=\left(-\dfrac{12}{5}\times\dfrac{5}{6}\times\dfrac{1}{2}\right)^{11}\times\dfrac{1}{2}$
$=-1\times\dfrac{1}{2}=-\dfrac{1}{2}$.
(2)$\left(-\dfrac{1}{4}\right)^{2023}\times4^{2024}=\left(-\dfrac{1}{4}\times4\right)^{2023}\times4$
$=-1\times4=-4$.
(1)$\left(2\dfrac{2}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(-\dfrac{1}{2}\right)^{12}$
$=\left(\dfrac{12}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(\dfrac{1}{2}\right)^{12}$
$=\left(\dfrac{12}{5}\right)^{11}\times\left(-\dfrac{5}{6}\right)^{11}\times\left(\dfrac{1}{2}\right)^{11}\times\dfrac{1}{2}$
$=\left(-\dfrac{12}{5}\times\dfrac{5}{6}\times\dfrac{1}{2}\right)^{11}\times\dfrac{1}{2}$
$=-1\times\dfrac{1}{2}=-\dfrac{1}{2}$.
(2)$\left(-\dfrac{1}{4}\right)^{2023}\times4^{2024}=\left(-\dfrac{1}{4}\times4\right)^{2023}\times4$
$=-1\times4=-4$.
6. 已知$2x + 5y - 3 = 0$,求$4^{x}\cdot32^{y}$的值.
答案:
解:因为$2x + 5y-3 = 0$,
所以$2x + 5y = 3$,
所以$4^{x}\cdot32^{y}=(2^{2})^{x}\cdot(2^{5})^{y}=2^{2x + 5y}=2^{3}=8$.
所以$2x + 5y = 3$,
所以$4^{x}\cdot32^{y}=(2^{2})^{x}\cdot(2^{5})^{y}=2^{2x + 5y}=2^{3}=8$.
7. 阅读理解:
在学习同底数幂的除法公式$a^{m}\div a^{n}=a^{m - n}(a\neq0)$时,有一个附加条件$m>n$.仿照以上公式,我们研究当$m = n$和$m < n$时,同底数幂的除法.
当被除数的指数等于除数的指数时,我们易得$5^{2}\div5^{2}=5^{2 - 2}=5^{0}$或$5^{2}\div5^{2}=\dfrac{5^{2}}{5^{2}} = 1$,即$5^{0}=1$;
同理可得,当$a\neq0$时,$a^{5}\div a^{5}=a^{5 - 5}=a^{0}$或$a^{5}\div a^{5}=\dfrac{a^{5}}{a^{5}} = 1$.
由此启发,我们规定:$a^{0}=1(a\neq0)$.
当被除数的指数小于除数的指数时,我们易得$5^{2}\div5^{4}=5^{2 - 4}=5^{-2}$或$5^{2}\div5^{4}=\dfrac{5^{2}}{5^{4}}=\dfrac{1}{5^{2}}$,即$5^{-2}=\dfrac{1}{5^{2}}$;同理可得,当$a\neq0$时,$a^{5}\div a^{8}=a^{5 - 8}=a^{-3}$或$a^{5}\div a^{8}=\dfrac{a^{5}}{a^{8}}=\dfrac{1}{a^{3}}$,即$a^{-3}=\dfrac{1}{a^{3}}$.
由此启发,我们规定:$a^{-p}=\dfrac{1}{a^{p}}(a\neq0,p是正整数)$.
根据以上知识,解决下列问题:
(1)填空:$(3 - \pi)^{0}=$________,$3^{-2}=$________;
(2)若$2^{2m - 1}\div2^{m}=\dfrac{1}{8}$,则$m$的值为________;
(3)若$(x - 1)^{x + 2}=1$,求$x$的值.
在学习同底数幂的除法公式$a^{m}\div a^{n}=a^{m - n}(a\neq0)$时,有一个附加条件$m>n$.仿照以上公式,我们研究当$m = n$和$m < n$时,同底数幂的除法.
当被除数的指数等于除数的指数时,我们易得$5^{2}\div5^{2}=5^{2 - 2}=5^{0}$或$5^{2}\div5^{2}=\dfrac{5^{2}}{5^{2}} = 1$,即$5^{0}=1$;
同理可得,当$a\neq0$时,$a^{5}\div a^{5}=a^{5 - 5}=a^{0}$或$a^{5}\div a^{5}=\dfrac{a^{5}}{a^{5}} = 1$.
由此启发,我们规定:$a^{0}=1(a\neq0)$.
当被除数的指数小于除数的指数时,我们易得$5^{2}\div5^{4}=5^{2 - 4}=5^{-2}$或$5^{2}\div5^{4}=\dfrac{5^{2}}{5^{4}}=\dfrac{1}{5^{2}}$,即$5^{-2}=\dfrac{1}{5^{2}}$;同理可得,当$a\neq0$时,$a^{5}\div a^{8}=a^{5 - 8}=a^{-3}$或$a^{5}\div a^{8}=\dfrac{a^{5}}{a^{8}}=\dfrac{1}{a^{3}}$,即$a^{-3}=\dfrac{1}{a^{3}}$.
由此启发,我们规定:$a^{-p}=\dfrac{1}{a^{p}}(a\neq0,p是正整数)$.
根据以上知识,解决下列问题:
(1)填空:$(3 - \pi)^{0}=$________,$3^{-2}=$________;
(2)若$2^{2m - 1}\div2^{m}=\dfrac{1}{8}$,则$m$的值为________;
(3)若$(x - 1)^{x + 2}=1$,求$x$的值.
答案:
解:
(1)$1$;$\dfrac{1}{9}$.
(2)$-2$.
(3)分以下三种情况:
①当$x - 1 = 1$时,原方程成立,此时$x = 2$;
②当$x - 1=-1$,且$x + 2$为偶数时,原方程成立,此时$x = 0$;
③当$x + 2 = 0$,且$x - 1\neq0$时,原方程成立,此时$x=-2$.
综上所述,$x$的值为$2$,$0$,$-2$.
(1)$1$;$\dfrac{1}{9}$.
(2)$-2$.
(3)分以下三种情况:
①当$x - 1 = 1$时,原方程成立,此时$x = 2$;
②当$x - 1=-1$,且$x + 2$为偶数时,原方程成立,此时$x = 0$;
③当$x + 2 = 0$,且$x - 1\neq0$时,原方程成立,此时$x=-2$.
综上所述,$x$的值为$2$,$0$,$-2$.
查看更多完整答案,请扫码查看