2025年53精准练七年级数学下册北师大版山西专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年53精准练七年级数学下册北师大版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第4页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
1.计算:$(a\cdot a^{3})^{2}=a^{2}\cdot (a^{3})^{2}=a^{2}\cdot a^{6}=a^{8}$,其中,第一步运算的依据是( )
A. 同底数幂的乘法法则
B. 幂的乘方法则
C. 乘法分配律
D. 积的乘方法则
A. 同底数幂的乘法法则
B. 幂的乘方法则
C. 乘法分配律
D. 积的乘方法则
答案:
D
2.下列计算正确的是( )
A. $(xy^{2})^{2}=xy^{4}$
B. $(3xy)^{3}=9x^{3}y$
C. $(-2a^{2})^{2}=-4a^{4}$
D. $(-3ab^{2})^{2}=9a^{2}b^{4}$
A. $(xy^{2})^{2}=xy^{4}$
B. $(3xy)^{3}=9x^{3}y$
C. $(-2a^{2})^{2}=-4a^{4}$
D. $(-3ab^{2})^{2}=9a^{2}b^{4}$
答案:
D
3.[2024太原晋源区月考]计算$\left(-\frac{1}{2}xy^{2}\right)^{3}$的结果是( )
A. $\frac{1}{6}x^{3}y^{5}$
B. $-\frac{1}{8}x^{3}y^{6}$
C. $\frac{1}{6}x^{3}y^{6}$
D. $-\frac{1}{8}x^{3}y^{5}$
A. $\frac{1}{6}x^{3}y^{5}$
B. $-\frac{1}{8}x^{3}y^{6}$
C. $\frac{1}{6}x^{3}y^{6}$
D. $-\frac{1}{8}x^{3}y^{5}$
答案:
B
4.一个正方体的棱长为$2\times10^{2}\text{ mm}$,则它的体积是( )
A. $8\times10^{2}\text{ mm}^{3}$
B. $6\times10^{5}\text{ mm}^{3}$
C. $8\times10^{6}\text{ mm}^{3}$
D. $6\times10^{6}\text{ mm}^{3}$
A. $8\times10^{2}\text{ mm}^{3}$
B. $6\times10^{5}\text{ mm}^{3}$
C. $8\times10^{6}\text{ mm}^{3}$
D. $6\times10^{6}\text{ mm}^{3}$
答案:
C
5.计算:
(1)$\left(\frac{2}{5}a^{4}\right)^{3}$;
(2)$-(3m^{2}n^{3})^{2}$;
(3)$(7a^{2}b)^{n}$;
(4)$(-4x^{m}y^{2n})^{3}$.
(1)$\left(\frac{2}{5}a^{4}\right)^{3}$;
(2)$-(3m^{2}n^{3})^{2}$;
(3)$(7a^{2}b)^{n}$;
(4)$(-4x^{m}y^{2n})^{3}$.
答案:
解:
(1)原式$=(\frac{2}{5})^{3}\cdot(a^{4})^{3}=\frac{8}{125}a^{12}$.
(2)原式$=-3^{2}\cdot(m^{2})^{2}\cdot(n^{3})^{2}=-9m^{4}n^{6}$.
(3)原式$=7^{n}\cdot(a^{2})^{n}\cdot b^{n}=7^{n}a^{2n}b^{n}$.
(4)原式$=(-4)^{3}\cdot(x^{m})^{3}\cdot(y^{2n})^{3}=-64x^{3m}y^{6n}$.
(1)原式$=(\frac{2}{5})^{3}\cdot(a^{4})^{3}=\frac{8}{125}a^{12}$.
(2)原式$=-3^{2}\cdot(m^{2})^{2}\cdot(n^{3})^{2}=-9m^{4}n^{6}$.
(3)原式$=7^{n}\cdot(a^{2})^{n}\cdot b^{n}=7^{n}a^{2n}b^{n}$.
(4)原式$=(-4)^{3}\cdot(x^{m})^{3}\cdot(y^{2n})^{3}=-64x^{3m}y^{6n}$.
6.填空:$8x^{3}=(\ \ \ \ )^{3}$;$0.0169a^{4}b^{6}=(\ \ \ \ )^{2}$;$\frac{196}{81}m^{2}n^{4}=(\ \ \ \ )^{2}$.
答案:
$2x$; $\pm0.13a^{2}b^{3}$; $\pm\frac{14}{9}mn^{2}$
7. $0.2^{4}\times4^{4}\times12.5^{4}=$__________.
答案:
10000
8.计算$\left(-\frac{12}{13}\right)^{2025}\times\left(\frac{13}{12}\right)^{2025}$的结果是__________.
答案:
-1
9.已知$a^{2m}b^{m}=10$,$18^{m}=10$,若$b = 2$,则$a=$_____.
答案:
$\pm3$
10.下列各图中,能直观解释“$(3a)^{2}=9a^{2}$”的是( )

答案:
C
11.若$(3a^{m}b^{m - n})^{2}=9a^{4}b^{8}$成立,则( )
A. $m = 2$,$n = - 2$
B. $m = - 2$,$n = - 2$
C. $m = - 2$,$n = 2$
D. $m = 2$,$n = 2$
A. $m = 2$,$n = - 2$
B. $m = - 2$,$n = - 2$
C. $m = - 2$,$n = 2$
D. $m = 2$,$n = 2$
答案:
A
12.计算:
(1)$(-5ab^{4})^{2}\cdot ab^{4}+(2ab^{4})^{3}$;
(2)$(3x^{12})^{2}+(-2x^{8})^{3}+(x^{4})^{5}\cdot x^{4}$.
(1)$(-5ab^{4})^{2}\cdot ab^{4}+(2ab^{4})^{3}$;
(2)$(3x^{12})^{2}+(-2x^{8})^{3}+(x^{4})^{5}\cdot x^{4}$.
答案:
解:
(1)原式$=25\cdot a^{2}\cdot b^{8}\cdot ab^{4}+8a^{3}b^{12}=25a^{3}b^{12}+8a^{3}b^{12}=33a^{3}b^{12}$.
(2)原式$=9x^{24}-8x^{24}+x^{24}=2x^{24}$.
(1)原式$=25\cdot a^{2}\cdot b^{8}\cdot ab^{4}+8a^{3}b^{12}=25a^{3}b^{12}+8a^{3}b^{12}=33a^{3}b^{12}$.
(2)原式$=9x^{24}-8x^{24}+x^{24}=2x^{24}$.
13.规定$a*b = ab - 1$,如:$2*1 = 2\times1 - 1 = 1$.
(1)若$4^{2}*4^{x - 1}=63$,求$x$的值;
(2)求$\left(\frac{4}{3}\right)^{2024}*(-0.75)^{2025}$的值.
(1)若$4^{2}*4^{x - 1}=63$,求$x$的值;
(2)求$\left(\frac{4}{3}\right)^{2024}*(-0.75)^{2025}$的值.
答案:
解:
(1)因为$4^{2}\times4^{x - 1}=64$,
所以$4^{2 + x - 1}=64 = 4^{3}$,
所以$1 + x = 3$,即$x = 2$.
(2)由题得$(\frac{4}{3})^{2024}\times(-0.75)^{2025}$
$=(\frac{4}{3})^{2024}\times(-0.75)^{2024}\times(-0.75)$
$=[\frac{4}{3}\times(-0.75)]^{2024}\times(-0.75)$
$=(-1)^{2024}\times(-0.75)$
$=-0.75$.
(1)因为$4^{2}\times4^{x - 1}=64$,
所以$4^{2 + x - 1}=64 = 4^{3}$,
所以$1 + x = 3$,即$x = 2$.
(2)由题得$(\frac{4}{3})^{2024}\times(-0.75)^{2025}$
$=(\frac{4}{3})^{2024}\times(-0.75)^{2024}\times(-0.75)$
$=[\frac{4}{3}\times(-0.75)]^{2024}\times(-0.75)$
$=(-1)^{2024}\times(-0.75)$
$=-0.75$.
查看更多完整答案,请扫码查看