1.(2024重庆中考A卷)已知$m = \sqrt{27}-\sqrt{3}$,则实数$m$的取值范围是 ( )
A.$2 < m < 3$
B.$3 < m < 4$
C.$4 < m < 5$
D.$5 < m < 6$
A.$2 < m < 3$
B.$3 < m < 4$
C.$4 < m < 5$
D.$5 < m < 6$
答案:
2.(2024浙江宁波模拟)下列运算正确的是(M8201003) ( )
A.$\sqrt{18}-\sqrt{8}=\sqrt{2}$
B.$\sqrt{(-2)^{2}\times3}=-2\sqrt{3}$
C.$\sqrt{81}=\pm9$
D.$\sqrt{3^{2}+4^{2}}=3 + 4 = 7$
A.$\sqrt{18}-\sqrt{8}=\sqrt{2}$
B.$\sqrt{(-2)^{2}\times3}=-2\sqrt{3}$
C.$\sqrt{81}=\pm9$
D.$\sqrt{3^{2}+4^{2}}=3 + 4 = 7$
答案:
3.计算:$\sqrt{27}+\sqrt{12}=$________.(M8201003)
答案:
4.计算:$\sqrt{\frac{1}{5}}-\frac{1}{15}\sqrt{180}=$________.(M8201003)
答案:
5.教材变式·P15例3 计算:(M8201003)
(1)$-\sqrt{12}+6\sqrt{\frac{1}{3}}-\sqrt{25}$. (2)$21\sqrt{\frac{1}{3}}-15\sqrt{\frac{2}{3}}+\sqrt{27}$.
(1)$-\sqrt{12}+6\sqrt{\frac{1}{3}}-\sqrt{25}$. (2)$21\sqrt{\frac{1}{3}}-15\sqrt{\frac{2}{3}}+\sqrt{27}$.
答案:
6.(2024浙江宁波鄞州月考)化简$\sqrt{8}-\sqrt{2}(\sqrt{2}+2)$的结果为(M8201003) ( )
A.2
B.$\sqrt{2}-2$
C.-2
D.$4\sqrt{2}-2$
A.2
B.$\sqrt{2}-2$
C.-2
D.$4\sqrt{2}-2$
答案:
7.计算$(5\sqrt{\frac{1}{5}}-2\sqrt{45})\div(-\sqrt{5})$的结果为(M8201003) ( )
A.5
B.-5
C.7
D.-7
A.5
B.-5
C.7
D.-7
答案:
8.若方程$ax = \sqrt{2}-2$的解是有理数,则$a$可以是(M8201003) ( )
A.$\sqrt{2}$
B.$\sqrt{2}+1$
C.$\sqrt{2}+2$
D.$2-\sqrt{2}$
A.$\sqrt{2}$
B.$\sqrt{2}+1$
C.$\sqrt{2}+2$
D.$2-\sqrt{2}$
答案:
9.若$a = 2-\sqrt{5},b = - 2+\sqrt{5}$,则$a + b + ab$的值为________.(M8201003)
答案:
10.计算:(M8201003)
(1)(2023浙江杭州西湖期中改编)$\sqrt{6}-\sqrt{6}\times\sqrt{12}\div\sqrt{2}$.
(2)(2023浙江温州龙湾部分学校期中)$\sqrt{3}\times\sqrt{6}-\sqrt{8}+\sqrt{(-2)^{2}}$.
(3)$\sqrt{6}\div\sqrt{2}+\sqrt{24}\times\sqrt{\frac{1}{2}}$.
(4)(2023浙江杭州西湖期中)$(\sqrt{3}+1)(\sqrt{3}-1)+1$.
(1)(2023浙江杭州西湖期中改编)$\sqrt{6}-\sqrt{6}\times\sqrt{12}\div\sqrt{2}$.
(2)(2023浙江温州龙湾部分学校期中)$\sqrt{3}\times\sqrt{6}-\sqrt{8}+\sqrt{(-2)^{2}}$.
(3)$\sqrt{6}\div\sqrt{2}+\sqrt{24}\times\sqrt{\frac{1}{2}}$.
(4)(2023浙江杭州西湖期中)$(\sqrt{3}+1)(\sqrt{3}-1)+1$.
答案:
11.解下列方程:(M8201003)
(1)$2\sqrt{3}x = -\sqrt{24}$. (2)$\sqrt{2}x = \sqrt{6}-\sqrt{8}$.
(1)$2\sqrt{3}x = -\sqrt{24}$. (2)$\sqrt{2}x = \sqrt{6}-\sqrt{8}$.
答案:
1.(2024重庆中考A卷)已知$m = \sqrt{27} - \sqrt{3}$,则实数$m$的取值范围是 ( )
A.$2<m<3$
B.$3<m<4$
C.$4<m<5$
D.$5<m<6$
A.$2<m<3$
B.$3<m<4$
C.$4<m<5$
D.$5<m<6$
答案:
B $m = \sqrt{27} - \sqrt{3} = 3\sqrt{3} - \sqrt{3} = 2\sqrt{3} = \sqrt{12}$,
$\because \sqrt{9} < \sqrt{12} < \sqrt{16}$,$\therefore 3 < \sqrt{12} < 4$,$\therefore 3 < m < 4$. 故选B.
2.(2024浙江宁波模拟)下列运算正确的是(M8201003) ( )
A.$\sqrt{18} - \sqrt{8} = \sqrt{2}$
B.$\sqrt{(-2)^2\times3} = -2\sqrt{3}$
C.$\sqrt{81} = \pm9$
D.$\sqrt{3^2 + 4^2} = 3 + 4 = 7$
A.$\sqrt{18} - \sqrt{8} = \sqrt{2}$
B.$\sqrt{(-2)^2\times3} = -2\sqrt{3}$
C.$\sqrt{81} = \pm9$
D.$\sqrt{3^2 + 4^2} = 3 + 4 = 7$
答案:
A $\sqrt{18} - \sqrt{8} = 3\sqrt{2} - 2\sqrt{2} = \sqrt{2}$,故A正确;$\sqrt{(-2)^2×3} = \sqrt{(-2)^2}×\sqrt{3} = 2\sqrt{3}$,故B错误;$\sqrt{81} = 9$,故C错误;$\sqrt{3^2 + 4^2} = \sqrt{25} = 5$,故D错误. 故选A.
3.计算:$\sqrt{27} + \sqrt{12} =$________.(M8201003)
答案:
答案 $5\sqrt{3}$
解析 $\sqrt{27} + \sqrt{12} = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$.
4.计算:$\sqrt{\frac{1}{5}} - \frac{1}{15}\sqrt{180} =$________.(M8201003)
答案:
答案 $-\frac{\sqrt{5}}{5}$
解析 $\sqrt{\frac{1}{5}} - \frac{1}{15}\sqrt{180} = \frac{\sqrt{5}}{5} - \frac{2\sqrt{5}}{5} = -\frac{\sqrt{5}}{5}$.
5.教材变式·P15例3计算:(M8201003)
(1)$-\sqrt{12} + 6\sqrt{\frac{1}{3}} - \sqrt{25}$.
(2)$21\sqrt{\frac{1}{3}} - 15\sqrt{\frac{2}{3}} + \sqrt{27}$.
(1)$-\sqrt{12} + 6\sqrt{\frac{1}{3}} - \sqrt{25}$.
(2)$21\sqrt{\frac{1}{3}} - 15\sqrt{\frac{2}{3}} + \sqrt{27}$.
答案:
解析
(1)$-\sqrt{12} + 6\sqrt{\frac{1}{3}} - \sqrt{25} = -2\sqrt{3} + 6×\frac{\sqrt{3}}{3} - 5 = -2\sqrt{3} + 2\sqrt{3} - 5 = -5$.
(2)$21\sqrt{\frac{1}{3}} - 15\sqrt{\frac{2}{3}} + \sqrt{27} = 21×\frac{\sqrt{3}}{3} - 15×\frac{\sqrt{6}}{3} + 3\sqrt{3} = 7\sqrt{3} - 5\sqrt{6} + 3\sqrt{3} = 10\sqrt{3} - 5\sqrt{6}$.
(1)$-\sqrt{12} + 6\sqrt{\frac{1}{3}} - \sqrt{25} = -2\sqrt{3} + 6×\frac{\sqrt{3}}{3} - 5 = -2\sqrt{3} + 2\sqrt{3} - 5 = -5$.
(2)$21\sqrt{\frac{1}{3}} - 15\sqrt{\frac{2}{3}} + \sqrt{27} = 21×\frac{\sqrt{3}}{3} - 15×\frac{\sqrt{6}}{3} + 3\sqrt{3} = 7\sqrt{3} - 5\sqrt{6} + 3\sqrt{3} = 10\sqrt{3} - 5\sqrt{6}$.
6.(2024浙江宁波鄞州月考)化简$\sqrt{8} - \sqrt{2}(\sqrt{2} + 7)$的结果为(M8201003) ( )
A.2
B.$\sqrt{7} - 2$
C.-2
D.$4\sqrt{2} - 2$
A.2
B.$\sqrt{7} - 2$
C.-2
D.$4\sqrt{2} - 2$
答案:
C $\sqrt{8} - \sqrt{2}(\sqrt{2} + 2) = 2\sqrt{2} - \sqrt{2}×\sqrt{2} - 2\sqrt{2} = 2\sqrt{2} - 2 - 2\sqrt{2} = -2$.
7.计算$(5\sqrt{\frac{1}{5}} - 2\sqrt{45})\div(-\sqrt{5})$的结果为(M8201003) ( )
A.5
B.-5
C.7
D.-7
A.5
B.-5
C.7
D.-7
答案:
A $(5\sqrt{\frac{1}{5}} - 2\sqrt{45})÷(-\sqrt{5}) = (\sqrt{5} - 6\sqrt{5})÷(-\sqrt{5}) = (-5\sqrt{5})÷(-\sqrt{5}) = 5$.
8.若方程$ax = \sqrt{2} - 2$的解是有理数,则$a$可以是 ( )
A.$\sqrt{2}$
B.$\sqrt{2} + 1$
C.$\sqrt{2} + 2$
D.$2 - \sqrt{2}$
A.$\sqrt{2}$
B.$\sqrt{2} + 1$
C.$\sqrt{2} + 2$
D.$2 - \sqrt{2}$
答案:
D A. 当$a = \sqrt{2}$时,原方程为$\sqrt{2}x = \sqrt{2} - 2$,解得$x = 1 - \sqrt{2}$,解不是有理数,所以A不符合题意;
B. 当$a = \sqrt{2} + 1$时,原方程为$(\sqrt{2} + 1)x = \sqrt{2} - 2$,解得$x = 4 - 3\sqrt{2}$,解不是有理数,所以B不符合题意;
C. 当$a = \sqrt{2} + 2$时,原方程为$(\sqrt{2} + 2)x = \sqrt{2} - 2$,解得$x = 2\sqrt{2} - 3$,解不是有理数,所以C不符合题意;
D. 当$a = 2 - \sqrt{2}$时,原方程为$(2 - \sqrt{2})x = \sqrt{2} - 2$,解得$x = -1$,解是有理数,所以D符合题意.
9.若$a = 2 - \sqrt{5}$,$b = -2 + \sqrt{5}$,则$a + b + ab$的值为________.(M8201003)
答案:
答案 $-9 + 4\sqrt{5}$
解析 当$a = 2 - \sqrt{5}$,$b = -2 + \sqrt{5}$时,
$a + b + ab = 2 - \sqrt{5} - 2 + \sqrt{5} + (2 - \sqrt{5})( -2 + \sqrt{5}) = -9 + 4\sqrt{5}$.
10.计算:(M8201003)
(1)(2023浙江杭州西湖期中改编)$\sqrt{6} - \sqrt{6}\times\sqrt{12}\div\sqrt{2}$.
(2)(2023浙江温州龙湾部分学校期中)$\sqrt{3}\times\sqrt{6} - \sqrt{8} + \sqrt{(-2)^2}$.
(3)$\sqrt{6}\div\sqrt{2} + \sqrt{24}\times\sqrt{\frac{1}{2}}$.
(4)(2023浙江杭州西湖期中)$(\sqrt{3} + 1)(\sqrt{3} - 1) + 1$.
(1)(2023浙江杭州西湖期中改编)$\sqrt{6} - \sqrt{6}\times\sqrt{12}\div\sqrt{2}$.
(2)(2023浙江温州龙湾部分学校期中)$\sqrt{3}\times\sqrt{6} - \sqrt{8} + \sqrt{(-2)^2}$.
(3)$\sqrt{6}\div\sqrt{2} + \sqrt{24}\times\sqrt{\frac{1}{2}}$.
(4)(2023浙江杭州西湖期中)$(\sqrt{3} + 1)(\sqrt{3} - 1) + 1$.
答案:
解析
(1)原式$ = \sqrt{6} - \sqrt{72}÷\sqrt{2} = \sqrt{6} - \sqrt{36} = \sqrt{6} - 6$.
(2)原式$ = 3\sqrt{2} - 2\sqrt{2} + 2 = \sqrt{2} + 2$.
(3)原式$ = \sqrt{3} + \sqrt{12} = \sqrt{3} + 2\sqrt{3} = 3\sqrt{3}$.
(4)原式$ = (\sqrt{3})^2 - 1^2 = 3 - 1 + 1 = 3$.
(1)原式$ = \sqrt{6} - \sqrt{72}÷\sqrt{2} = \sqrt{6} - \sqrt{36} = \sqrt{6} - 6$.
(2)原式$ = 3\sqrt{2} - 2\sqrt{2} + 2 = \sqrt{2} + 2$.
(3)原式$ = \sqrt{3} + \sqrt{12} = \sqrt{3} + 2\sqrt{3} = 3\sqrt{3}$.
(4)原式$ = (\sqrt{3})^2 - 1^2 = 3 - 1 + 1 = 3$.
11.解下列方程:(M8201003)
(1)$2\sqrt{3}x = -\sqrt{24}$. (2)$\sqrt{2}x = \sqrt{6} - \sqrt{8}$.
(1)$2\sqrt{3}x = -\sqrt{24}$. (2)$\sqrt{2}x = \sqrt{6} - \sqrt{8}$.
答案:
解析
(1)$2\sqrt{3}x = -\sqrt{24}$,两边同除以$2\sqrt{3}$,得$x = -\sqrt{2}$.
(2)$\sqrt{2}x = \sqrt{6} - \sqrt{8}$,两边同除以$\sqrt{2}$,得$x = \sqrt{3} - 2$.
(1)$2\sqrt{3}x = -\sqrt{24}$,两边同除以$2\sqrt{3}$,得$x = -\sqrt{2}$.
(2)$\sqrt{2}x = \sqrt{6} - \sqrt{8}$,两边同除以$\sqrt{2}$,得$x = \sqrt{3} - 2$.
查看更多完整答案,请扫码查看