13.(2024浙江杭州六中期中,14,★★☆)若$\sqrt{5}\approx2.236$,则与$\sqrt{20}$最接近的整数是________.(M8201003)
答案:
答案:4
解析:$\because\sqrt{20}=2\sqrt{5}$,$\sqrt{5}\approx2.236$,
$\therefore2\sqrt{5}\approx2\times2.236 = 4.472$,
$\because4<4.472<4.5$,
$\therefore$与$\sqrt{20}$最接近的整数是4.
故答案为4.
14.已知$a = 1,b = - 10,c = - 15$,求代数式$\sqrt{b^{2}-4ac}$的值.(M8201003)
答案:
解析
当$a = 1$,$b=-10$,$c = - 15$时,$\sqrt{b^{2}-4ac}=\sqrt{(-10)^{2}-4\times1\times(-15)}=\sqrt{160}=4\sqrt{10}$.
15.若$\sqrt{\frac{x - 3}{5 - x}}=\frac{\sqrt{x - 3}}{\sqrt{5 - x}}$成立,请回答下列各题:(M8201003)
(1)若$x$为整数,则是否存在$x$,使$\sqrt{x + 5}$的结果也为整数?若存在,请求出$x$的值;若不存在,请说明理由.
(2)试化简:$\sqrt{(x - 2)^{2}}-(\sqrt{x - 3})^{2}+(\sqrt{x - 4})^{2}-(\sqrt{5 - x})^{2}+\sqrt{(x - 6)^{2}}$.
(1)若$x$为整数,则是否存在$x$,使$\sqrt{x + 5}$的结果也为整数?若存在,请求出$x$的值;若不存在,请说明理由.
(2)试化简:$\sqrt{(x - 2)^{2}}-(\sqrt{x - 3})^{2}+(\sqrt{x - 4})^{2}-(\sqrt{5 - x})^{2}+\sqrt{(x - 6)^{2}}$.
答案:
解析
(1)存在.$\because\sqrt{\frac{x - 3}{5 - x}}=\frac{\sqrt{x - 3}}{\sqrt{5 - x}}$成立, $\therefore\begin{cases}x - 3\geq0\\5 - x>0\end{cases}$,解得$3\leq x<5$. $\because x$为整数,$\therefore x$可取3,4. 当$x = 3$时,$\sqrt{x + 5}=\sqrt{3 + 5}=2\sqrt{2}$,结果不是整数; 当$x = 4$时,$\sqrt{x + 5}=\sqrt{4 + 5}=3$,结果是整数. 综上,存在$x = 4$,使$\sqrt{x + 5}$的结果也为整数.
(2)由
(1)知$3\leq x<5$, $\therefore|x - 2|=x - 2$,$|x - 6|=6 - x$, $ \begin{aligned} &\therefore\sqrt{(x - 2)^{2}}-(\sqrt{x - 3})^{2}+(\sqrt{x - 4})^{2}-(\sqrt{5 - x})^{2}+\sqrt{(x - 6)^{2}}\\ =&|x - 2|-(x - 3)+x - 4-(5 - x)+|x - 6|\\ =&x - 2-(x - 3)+x - 4-(5 - x)+6 - x\\ =&x - 2 - x + 3 + x - 4 - 5 + x + 6 - x\\ =&x - 2. \end{aligned} $
(1)存在.$\because\sqrt{\frac{x - 3}{5 - x}}=\frac{\sqrt{x - 3}}{\sqrt{5 - x}}$成立, $\therefore\begin{cases}x - 3\geq0\\5 - x>0\end{cases}$,解得$3\leq x<5$. $\because x$为整数,$\therefore x$可取3,4. 当$x = 3$时,$\sqrt{x + 5}=\sqrt{3 + 5}=2\sqrt{2}$,结果不是整数; 当$x = 4$时,$\sqrt{x + 5}=\sqrt{4 + 5}=3$,结果是整数. 综上,存在$x = 4$,使$\sqrt{x + 5}$的结果也为整数.
(2)由
(1)知$3\leq x<5$, $\therefore|x - 2|=x - 2$,$|x - 6|=6 - x$, $ \begin{aligned} &\therefore\sqrt{(x - 2)^{2}}-(\sqrt{x - 3})^{2}+(\sqrt{x - 4})^{2}-(\sqrt{5 - x})^{2}+\sqrt{(x - 6)^{2}}\\ =&|x - 2|-(x - 3)+x - 4-(5 - x)+|x - 6|\\ =&x - 2-(x - 3)+x - 4-(5 - x)+6 - x\\ =&x - 2 - x + 3 + x - 4 - 5 + x + 6 - x\\ =&x - 2. \end{aligned} $
16.运算能力 情境题·数学文化《数书九章》中的已知三角形三边长求三角形的面积的方法填补了我国传统数学的一个空白,其方法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅;开平方,得积”.把这段文字表述为数学语言:在$\triangle ABC$中,$\angle A、\angle B、\angle C$所对的边长分别为$a、b、c$,且$a>b>c$,则其面积$S = \sqrt{\frac{1}{4}[c^{2}a^{2}-(\frac{c^{2}+a^{2}-b^{2}}{2})^{2}]}$.利用这个方法解决问题:如图,在$\triangle ABC$中,$AB = \sqrt{5},AC = \sqrt{10},BC = 5$,求$S_{\triangle ABC}$.(M8201003)

答案:
解析
在$\triangle ABC$中,$AB=\sqrt{5}$,$AC=\sqrt{10}$,$BC = 5$,
$
\begin{aligned}
&\therefore S_{\triangle ABC}=\sqrt{\frac{1}{4}\times\left[5\times25-\left(\frac{5 + 25 - 10}{2}\right)^{2}\right]}\\
=&\sqrt{\frac{1}{4}\times(125 - 100)}=\frac{5}{2}.
\end{aligned}
$
例 已知$ab\neq0$且$a < b$,化简二次根式$\sqrt{-a^{3}b}$的结果是________.(M8201003)
答案:
答案:$-a\sqrt{-ab}$
解析:$\because\sqrt{-a^{3}b}$有意义,$ab\neq0$,$\therefore - a^{3}b>0$,$\therefore a^{3}b<0$,$-ab>0$,
$\because a < b$,$\therefore a<0<b$,
$\therefore\sqrt{-a^{3}b}=\sqrt{a^{2}}\cdot\sqrt{-ab}=|a|\sqrt{-ab}=-a\sqrt{-ab}$.
1.已知两字母积的符号,化简根号内负系数整式 已知$ab < 0$,化简:$\sqrt{-a^{2}b}=$________.
答案:
答案:$a\sqrt{-b}$
解析:$\because\sqrt{-a^{2}b}$有意义,$ab<0$,$\therefore - a^{2}b>0$,$\therefore - b>0$,
$\therefore b<0$,$\therefore a>0$,$\therefore\sqrt{-a^{2}b}=\sqrt{a^{2}}\cdot\sqrt{-b}=|a|\sqrt{-b}=a\sqrt{-b}$.
2.已知两字母积的符号,化简根号内分式 (2022浙江杭州锦绣育才教育集团月考,15,★★☆)已知$xy < 0$,化简:$x\sqrt{\frac{-y}{x^{2}}}=$________.(M8201003)
答案:
答案:$\sqrt{-y}$
解析:$\because x\sqrt{\frac{-y}{x^{2}}}$有意义,$\therefore - y\geq0$,且$x^{2}>0$,$\therefore y\leq0$,
$\because xy<0$,$\therefore y<0$,$x>0$. $\therefore x\sqrt{\frac{-y}{x^{2}}}=x\cdot\frac{\sqrt{-y}}{\sqrt{x^{2}}}=x\cdot\frac{\sqrt{-y}}{|x|}=x\cdot\frac{\sqrt{-y}}{x}=\sqrt{-y}$.
查看更多完整答案,请扫码查看