1.下列各式化简正确的是(M8201003) ( )
A.$\sqrt{24}=2\sqrt{3}$
B.$\sqrt{48}=4\sqrt{6}$
C.$\sqrt{18}=3\sqrt{2}$
D.$\sqrt{72}=12\sqrt{2}$
A.$\sqrt{24}=2\sqrt{3}$
B.$\sqrt{48}=4\sqrt{6}$
C.$\sqrt{18}=3\sqrt{2}$
D.$\sqrt{72}=12\sqrt{2}$
答案:
C
$
\begin{aligned}
&\sqrt{24}=\sqrt{2^{2}\times6}=\sqrt{2^{2}}\times\sqrt{6}=2\sqrt{6},故A错误;\\
&\sqrt{48}=\sqrt{4^{2}\times3}=\sqrt{4^{2}}\times\sqrt{3}=4\sqrt{3},故B错误;\\
&\sqrt{18}=\sqrt{3^{2}\times2}=\sqrt{3^{2}}\times\sqrt{2}=3\sqrt{2},故C正确;\\
&\sqrt{72}=\sqrt{6^{2}\times2}=\sqrt{6^{2}}\times\sqrt{2}=6\sqrt{2},故D错误.
\end{aligned}
$
故选C.
2.(2024浙江杭州采荷中学期中)化简:$\sqrt{150}=$______.(M8201003)
答案:
答案:$5\sqrt{6}$
解析:$\sqrt{150}=\sqrt{5^{2}\times6}=\sqrt{5^{2}}\times\sqrt{6}=5\sqrt{6}$.
3.教材变式·P9例3(1)(2)化简:(M8201003)
(1)$\sqrt{144\times256}$. (2)$\sqrt{5^{2}\times11}$.
(1)$\sqrt{144\times256}$. (2)$\sqrt{5^{2}\times11}$.
答案:
解析
(1) $\sqrt{144\times256}=\sqrt{144}\times\sqrt{256}=12\times16 = 192$.
(2) $\sqrt{5^{2}\times11}=\sqrt{5^{2}}\times\sqrt{11}=5\sqrt{11}$.
(1) $\sqrt{144\times256}=\sqrt{144}\times\sqrt{256}=12\times16 = 192$.
(2) $\sqrt{5^{2}\times11}=\sqrt{5^{2}}\times\sqrt{11}=5\sqrt{11}$.
4.(2022浙江杭州萧山期中)下列各式化简正确的是(M8201003) ( )
A.$\sqrt{\frac{9}{4}}=\frac{9}{4}$
B.$\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{4}=\frac{3}{4}$
C.$\sqrt{\frac{9}{4}}=\frac{9}{\sqrt{4}}=\frac{9}{2}$
D.$\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}$
A.$\sqrt{\frac{9}{4}}=\frac{9}{4}$
B.$\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{4}=\frac{3}{4}$
C.$\sqrt{\frac{9}{4}}=\frac{9}{\sqrt{4}}=\frac{9}{2}$
D.$\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}$
答案:
D
由二次根式的性质$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}(a\geq0,b > 0)$可知D正确. 故选D.
5.新独家原创 化简:(1)$\sqrt{1\frac{1}{2}}=$________;(2)$\sqrt{1.2}=$________.(M8201003)
答案:
答案
(1) $\frac{\sqrt{6}}{2}$
(2) $\frac{\sqrt{30}}{5}$ 解析
(1) $\sqrt{1\frac{1}{2}}=\sqrt{\frac{3}{2}}=\sqrt{\frac{3\times2}{2\times2}}=\frac{\sqrt{6}}{2}$.
(2) $\sqrt{1.2}=\sqrt{\frac{12}{10}}=\sqrt{\frac{6}{5}}=\sqrt{\frac{6\times5}{5\times5}}=\frac{\sqrt{30}}{5}$.
(1) $\frac{\sqrt{6}}{2}$
(2) $\frac{\sqrt{30}}{5}$ 解析
(1) $\sqrt{1\frac{1}{2}}=\sqrt{\frac{3}{2}}=\sqrt{\frac{3\times2}{2\times2}}=\frac{\sqrt{6}}{2}$.
(2) $\sqrt{1.2}=\sqrt{\frac{12}{10}}=\sqrt{\frac{6}{5}}=\sqrt{\frac{6\times5}{5\times5}}=\frac{\sqrt{30}}{5}$.
6.教材变式·P9例3(3)(4)化简:(M8201003)
(1)$\sqrt{\frac{3}{4}}$. (2)$\sqrt{\frac{2}{3}}$.
(1)$\sqrt{\frac{3}{4}}$. (2)$\sqrt{\frac{2}{3}}$.
答案:
解析
(1) $\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}$.
(2) $\sqrt{\frac{2}{3}}=\sqrt{\frac{2\times3}{3\times3}}=\frac{\sqrt{6}}{3}$.
(1) $\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}$.
(2) $\sqrt{\frac{2}{3}}=\sqrt{\frac{2\times3}{3\times3}}=\frac{\sqrt{6}}{3}$.
7.(2024浙江湖州吴兴期中)下列式子中,不是最简二次根式的是(M8201002) ( )
A.$\sqrt{5}$
B.$\sqrt{8}$
C.$\frac{\sqrt{2}}{2}$
D.$\sqrt{6}$
A.$\sqrt{5}$
B.$\sqrt{8}$
C.$\frac{\sqrt{2}}{2}$
D.$\sqrt{6}$
答案:
B
$\because\sqrt{8}=\sqrt{4\times2}=2\sqrt{2}$,$\therefore\sqrt{8}$不是最简二次根式,故选B.
8.写出一个实数$x$,使$\sqrt{x - 3}$是最简二次根式,则$x$可以是________.
答案:
答案:6(答案不唯一)
解析:当$x = 6$时,$\sqrt{x - 3}=\sqrt{6 - 3}=\sqrt{3}$,$\sqrt{3}$是最简二次根式. (答案不唯一)
9.计算:(M8201003)
(1)$\sqrt{(-6)\times(+12)\times(-20)}$. (2)$\sqrt{1\frac{11}{16}}$. (3)$\sqrt{(-0.125)\times(-0.25)}$.
(1)$\sqrt{(-6)\times(+12)\times(-20)}$. (2)$\sqrt{1\frac{11}{16}}$. (3)$\sqrt{(-0.125)\times(-0.25)}$.
答案:
解析
(1) $\sqrt{(-6)\times(+12)\times(-20)}=\sqrt{6\times12\times20}=\sqrt{6^{2}\times2^{2}\times10}=12\sqrt{10}$.
(2) $\sqrt{1\frac{11}{16}}=\sqrt{\frac{27}{16}}=\frac{\sqrt{27}}{\sqrt{16}}=\frac{3\sqrt{3}}{4}$.
(3) $\sqrt{(-0.125)\times(-0.25)}=\sqrt{\frac{1}{8}\times\frac{1}{4}}=\frac{1}{2}\sqrt{\frac{1}{2}\times\frac{1}{2}}=\frac{1}{4}\times\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{8}$.
(1) $\sqrt{(-6)\times(+12)\times(-20)}=\sqrt{6\times12\times20}=\sqrt{6^{2}\times2^{2}\times10}=12\sqrt{10}$.
(2) $\sqrt{1\frac{11}{16}}=\sqrt{\frac{27}{16}}=\frac{\sqrt{27}}{\sqrt{16}}=\frac{3\sqrt{3}}{4}$.
(3) $\sqrt{(-0.125)\times(-0.25)}=\sqrt{\frac{1}{8}\times\frac{1}{4}}=\frac{1}{2}\sqrt{\frac{1}{2}\times\frac{1}{2}}=\frac{1}{4}\times\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{8}$.
10.(2024浙江杭州中学期中,2,★☆☆)下列二次根式是最简二次根式的是(M8201002)(M8201003) ( )
A.$\sqrt{16}$
B.$\sqrt{3.2}$
C.$\sqrt{3}$
D.$\sqrt{\frac{5}{9}}$
A.$\sqrt{16}$
B.$\sqrt{3.2}$
C.$\sqrt{3}$
D.$\sqrt{\frac{5}{9}}$
答案:
C
$\because\sqrt{16}=4$,$\therefore\sqrt{16}$不是最简二次根式,故A不符合题意;
$\because\sqrt{3.2}=\sqrt{\frac{32}{10}}=\sqrt{\frac{16}{5}}=\frac{4\sqrt{5}}{5}$,$\therefore\sqrt{3.2}$不是最简二次根式,故B不符合题意;
$\sqrt{3}$是最简二次根式,故C符合题意;
$\because\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{3}$,$\therefore\sqrt{\frac{5}{9}}$不是最简二次根式,故D不符合题意. 故选C.
11.(2024浙江永康三中期中,2,★☆☆)若正方形的周长为40,则其对角线长为(M8201003) ( )
A.100
B.$20\sqrt{2}$
C.$10\sqrt{2}$
D.10
A.100
B.$20\sqrt{2}$
C.$10\sqrt{2}$
D.10
答案:
C
$\because$正方形的周长为40,$\therefore$正方形的边长为10,
$\therefore$其对角线长为$\sqrt{10^{2}+10^{2}}=10\sqrt{2}$.
12.跨科学·匀变速运动(2022山东聊城中考,5,★☆☆)射击时,子弹射出枪口时的速度可用公式$v = \sqrt{2as}$进行计算,其中$a$为子弹的加速度,$s$为枪筒的长.如果$a = 5\times10^{5}\text{ m/s}^{2},s = 0.64\text{ m}$,那么子弹射出枪口时的速度(用科学记数法表示)为 ( )
A.$0.4\times10^{3}\text{ m/s}$
B.$0.8\times10^{3}\text{ m/s}$
C.$4\times10^{2}\text{ m/s}$
D.$8\times10^{2}\text{ m/s}$
A.$0.4\times10^{3}\text{ m/s}$
B.$0.8\times10^{3}\text{ m/s}$
C.$4\times10^{2}\text{ m/s}$
D.$8\times10^{2}\text{ m/s}$
答案:
D
$v=\sqrt{2as}=\sqrt{2\times5\times10^{5}\times0.64}=8\times10^{2}(m/s)$.
查看更多完整答案,请扫码查看