2025年绿色通道45分钟课时作业与单元测评高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绿色通道45分钟课时作业与单元测评高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
10. $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}(n\geqslant 2,n\in \mathbf{N})$,求证:$S_{2^n} > 1 + \frac{n}{2}(n\geqslant 2,n\in \mathbf{N})$。
答案:
10.证明 当$n = 2$时,左边$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$,
右边$= 1 + \frac{2}{2} = 2$,左边$>$右边;
假设当$n = k$时结论成立,即$S_{2^k} > 1 + \frac{k}{2}(k \geqslant 2,k \in \mathbf{N})$,
那么,当$n = k + 1$时,$S_{2^{k + 1}} = S_{2^k} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + ·s + \frac{1}{2^{k + 1}} > 1 + \frac{k}{2} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + ·s + \frac{1}{2^{k + 1}} > 1 + \frac{k}{2} + \frac{1}{2^{k + 1}} + \frac{1}{2^{k + 1}} + ·s + \frac{1}{2^{k + 1}} = 1 + \frac{k}{2} + \frac{2^k}{2^{k + 1}} = 1 + \frac{k + 1}{2}$,
$\therefore$当$n = k + 1$时,不等式也成立,
综上,$S_{2^n} > 1 + \frac{n}{2}(n \geqslant 2,n \in \mathbf{N})$.
右边$= 1 + \frac{2}{2} = 2$,左边$>$右边;
假设当$n = k$时结论成立,即$S_{2^k} > 1 + \frac{k}{2}(k \geqslant 2,k \in \mathbf{N})$,
那么,当$n = k + 1$时,$S_{2^{k + 1}} = S_{2^k} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + ·s + \frac{1}{2^{k + 1}} > 1 + \frac{k}{2} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + ·s + \frac{1}{2^{k + 1}} > 1 + \frac{k}{2} + \frac{1}{2^{k + 1}} + \frac{1}{2^{k + 1}} + ·s + \frac{1}{2^{k + 1}} = 1 + \frac{k}{2} + \frac{2^k}{2^{k + 1}} = 1 + \frac{k + 1}{2}$,
$\therefore$当$n = k + 1$时,不等式也成立,
综上,$S_{2^n} > 1 + \frac{n}{2}(n \geqslant 2,n \in \mathbf{N})$.
11. 若正项数列$\{a_n\}$中,$a_1 + a_2 + a_3 + \dots + a_n = \frac{1}{2}\left(a_n + \frac{1}{a_n}\right),n\in \mathbf{N}^*$,则$a_{2025}$的值是 (
A.$\sqrt{2025} + \sqrt{2024}$
B.$\sqrt{2026} + \sqrt{2025}$
C.$\sqrt{2025} - \sqrt{2024}$
D.$\sqrt{2026} - \sqrt{2025}$
C
)A.$\sqrt{2025} + \sqrt{2024}$
B.$\sqrt{2026} + \sqrt{2025}$
C.$\sqrt{2025} - \sqrt{2024}$
D.$\sqrt{2026} - \sqrt{2025}$
答案:
11.C $\because a_1 + a_2 + a_3 + ·s + a_n = \frac{1}{2}(a_n + \frac{1}{a_n})$,$\therefore$在正项数列$\{ a_n\}$中,当$n = 1$时,$a_1 = \frac{1}{2}(a_1 + \frac{1}{a_1})$,解得$a_1 = 1$,当$n = 2$时,$1 + a_2 = \frac{1}{2}(a_2 + \frac{1}{a_2})$,解得$a_2 = \sqrt{2} - 1$,同理得$a_3 = \sqrt{3} - \sqrt{2},a_4 = 2 - \sqrt{3}$,$·s$,
猜想$a_n = \sqrt{n} - \sqrt{n - 1}$.
证明:当$n = 1$时,显然成立;
假设$n = k$时,$a_k = \sqrt{k} - \sqrt{k - 1}$,
则当$n = k + 1$时,$a_1 + a_2 + a_3 + ·s + a_k + a_{k + 1} = \frac{1}{2}(a_{k + 1} + \frac{1}{a_{k + 1}})$,
$\therefore \frac{1}{a_{k + 1}} - a_{k + 1} = 2\sqrt{k}$,得$a_{k + 1} = \sqrt{k + 1} - \sqrt{k}$.
故$n = k + 1$时,结论也成立.故$a_n = \sqrt{n} - \sqrt{n - 1}$,
$\therefore a_{2025} = \sqrt{2025} - \sqrt{2024}$,故选C.
猜想$a_n = \sqrt{n} - \sqrt{n - 1}$.
证明:当$n = 1$时,显然成立;
假设$n = k$时,$a_k = \sqrt{k} - \sqrt{k - 1}$,
则当$n = k + 1$时,$a_1 + a_2 + a_3 + ·s + a_k + a_{k + 1} = \frac{1}{2}(a_{k + 1} + \frac{1}{a_{k + 1}})$,
$\therefore \frac{1}{a_{k + 1}} - a_{k + 1} = 2\sqrt{k}$,得$a_{k + 1} = \sqrt{k + 1} - \sqrt{k}$.
故$n = k + 1$时,结论也成立.故$a_n = \sqrt{n} - \sqrt{n - 1}$,
$\therefore a_{2025} = \sqrt{2025} - \sqrt{2024}$,故选C.
12. 已知数列$\{a_n\}$的前$n$项和为$S_n$,且满足$a_n = \frac{(S_n - 1)^2}{S_n}$。数列$\{b_n\}$满足$b_n = (-1)^n· (2n + 1)a_n$,则数列$\{b_n\}$的前$100$项和$T_{100}$为 (
A.$\frac{101}{100}$
B.$-\frac{101}{100}$
C.$-\frac{100}{101}$
D.$\frac{100}{101}$
C
)A.$\frac{101}{100}$
B.$-\frac{101}{100}$
C.$-\frac{100}{101}$
D.$\frac{100}{101}$
答案:
12.C $\because a_n = \frac{(S_n - 1)^2}{S_n}$,$\therefore$当$n = 1$时,有$a_1 = \frac{(S_1 - 1)^2}{S_1}$,
解得$a_1 = \frac{1}{2}$;
当$n = 2$时,可解得$a_2 = \frac{1}{6}$,故猜想:$a_n = \frac{1}{n(n + 1)}$,
下面利用数学归纳法证明猜想:
①当$n = 1,2$时,由以上知道$a_n = \frac{1}{n(n + 1)}$显然成立;
②假设当$n = k(k \geqslant 2)$时,有$a_k = \frac{1}{k(k + 1)}$成立,此时
$S_k = \frac{1}{1 × 2} + \frac{1}{2 × 3} + ·s + \frac{1}{k(k + 1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{k} - \frac{1}{k + 1} = \frac{k}{k + 1}$成立,
那么当$n = k + 1$时,
有$a_{k + 1} = \frac{(S_{k + 1} - 1)^2}{S_{k + 1}} = \frac{(S_k + a_{k + 1} - 1)^2}{S_k + a_{k + 1}} = \frac{(\frac{k}{k + 1} + a_{k + 1} - 1)^2}{\frac{k}{k + 1} + a_{k + 1}} = \frac{\frac{k}{k + 1} + a_{k + 1}}{\frac{k}{k + 1} + a_{k + 1}}$
解得$a_{k + 1} = \frac{1}{(k + 1)[(k + 1) + 1]}$,这说明当$n = k + 1$时也成立.
由①②知$a_n = \frac{1}{n(n + 1)}$.
$\because b_n = (-1)^n · (2n + 1)a_n$,
$\therefore b_n = (-1)^n · (2n + 1) · \frac{1}{n(n + 1)} = (-1)^n(\frac{1}{n} + \frac{1}{n + 1})$,
$\therefore$数列$\{ b_n\}$的前$100$项和
$T_{100} = -(1 + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{3}) - (\frac{1}{3} + \frac{1}{4}) + ·s + (\frac{1}{100} + \frac{1}{101}) = -1 + \frac{1}{101} = -\frac{100}{101}$.
解得$a_1 = \frac{1}{2}$;
当$n = 2$时,可解得$a_2 = \frac{1}{6}$,故猜想:$a_n = \frac{1}{n(n + 1)}$,
下面利用数学归纳法证明猜想:
①当$n = 1,2$时,由以上知道$a_n = \frac{1}{n(n + 1)}$显然成立;
②假设当$n = k(k \geqslant 2)$时,有$a_k = \frac{1}{k(k + 1)}$成立,此时
$S_k = \frac{1}{1 × 2} + \frac{1}{2 × 3} + ·s + \frac{1}{k(k + 1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{k} - \frac{1}{k + 1} = \frac{k}{k + 1}$成立,
那么当$n = k + 1$时,
有$a_{k + 1} = \frac{(S_{k + 1} - 1)^2}{S_{k + 1}} = \frac{(S_k + a_{k + 1} - 1)^2}{S_k + a_{k + 1}} = \frac{(\frac{k}{k + 1} + a_{k + 1} - 1)^2}{\frac{k}{k + 1} + a_{k + 1}} = \frac{\frac{k}{k + 1} + a_{k + 1}}{\frac{k}{k + 1} + a_{k + 1}}$
解得$a_{k + 1} = \frac{1}{(k + 1)[(k + 1) + 1]}$,这说明当$n = k + 1$时也成立.
由①②知$a_n = \frac{1}{n(n + 1)}$.
$\because b_n = (-1)^n · (2n + 1)a_n$,
$\therefore b_n = (-1)^n · (2n + 1) · \frac{1}{n(n + 1)} = (-1)^n(\frac{1}{n} + \frac{1}{n + 1})$,
$\therefore$数列$\{ b_n\}$的前$100$项和
$T_{100} = -(1 + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{3}) - (\frac{1}{3} + \frac{1}{4}) + ·s + (\frac{1}{100} + \frac{1}{101}) = -1 + \frac{1}{101} = -\frac{100}{101}$.
13. (多选)已知数列$\{a_n\}$满足$a_1 = 1$,且$a_{n + 1} = \frac{a_n}{1 + a_n}$($n$为正整数),利用数列的递推公式猜想数列$\{a_n\}$的通项公式为$a_n = \frac{1}{n}$。下面是用数学归纳法的证明过程:
(1)当$n = 1$时,$a_1 = 1$满足$a_n = \frac{1}{n}$,命题成立;
(2)假设$n = k$($k$为正整数)时命题成立,即$a_k = \frac{1}{k}$成立,则当$n = k + 1$时,由$a_{n + 1} = \frac{a_n}{1 + a_n}$得$\frac{1}{a_{n + 1}} = \frac{1 + a_n}{a_n} = \frac{1}{a_n} + 1$,即$\left\{\frac{1}{a_n}\right\}$是以$\frac{1}{a_1} = 1$为首项,$1$为公差的等差数列,所以$\frac{1}{a_n} = n$,即$a_n = \frac{1}{n}$,所以$a_{k + 1} = \frac{1}{k + 1}$,命题也成立。
由(1)(2)知$a_n = \frac{1}{n}$。
则下列判断正确的是 (
A. 猜想正确,推理(1)正确
B. 猜想不正确
C. 猜想正确,推理(1)(2)都正确
D. 猜想正确,推理(2)不正确
(1)当$n = 1$时,$a_1 = 1$满足$a_n = \frac{1}{n}$,命题成立;
(2)假设$n = k$($k$为正整数)时命题成立,即$a_k = \frac{1}{k}$成立,则当$n = k + 1$时,由$a_{n + 1} = \frac{a_n}{1 + a_n}$得$\frac{1}{a_{n + 1}} = \frac{1 + a_n}{a_n} = \frac{1}{a_n} + 1$,即$\left\{\frac{1}{a_n}\right\}$是以$\frac{1}{a_1} = 1$为首项,$1$为公差的等差数列,所以$\frac{1}{a_n} = n$,即$a_n = \frac{1}{n}$,所以$a_{k + 1} = \frac{1}{k + 1}$,命题也成立。
由(1)(2)知$a_n = \frac{1}{n}$。
则下列判断正确的是 (
AD
)A. 猜想正确,推理(1)正确
B. 猜想不正确
C. 猜想正确,推理(1)(2)都正确
D. 猜想正确,推理(2)不正确
答案:
13.AD 由化递推公式为通项公式知猜想正确,推理
(1)正确;推理
(2)不正确,错在证明$n = k + 1$时,没用假设$n = k$时的结论,即应为$a_{k + 1} = \frac{a_k}{1 + a_k} = \frac{\frac{1}{k}}{1 + \frac{1}{k}} = \frac{1}{k + 1}$.
(1)正确;推理
(2)不正确,错在证明$n = k + 1$时,没用假设$n = k$时的结论,即应为$a_{k + 1} = \frac{a_k}{1 + a_k} = \frac{\frac{1}{k}}{1 + \frac{1}{k}} = \frac{1}{k + 1}$.
14. 求证:当$n\in \mathbf{N}^*$,且$n\geqslant 2$时,$a^n - nab^{n - 1} + (n - 1)b^n$能被$(a - b)^2$整除。
答案:
14.证明 当$n = 2$时,原式为$a^2 - 2ab + b^2 = (a - b)^2$,显然能被$(a - b)^2$整除,
假设当$n = k(k \geqslant 2)$时,$a^k - kab^{k - 1} + (k - 1)b^k$能被$(a - b)^2$整除,
设上式除以$(a - b)^2$所得的商为$r$,则
$a^k - kab^{k - 1} + (k - 1)b^k = r(a - b)^2$,
$\therefore a^{k + 1} = ka^2b^{k - 1} - (k - 1)ab^k + r(a - b)^2a$,
故$a^{k + 1} - (k + 1)ab^k + kb^{k + 1}$
$= ka^2b^{k - 1} - (k - 1)ab^k + r(a - b)^2a - (k + 1)ab^k + kb^{k + 1}$
$= kb^{k - 1}(a - b)^2 + r(a - b)^2a = (ra + kb^{k - 1})(a - b)^2$,
$\therefore$当$n = k$时命题也成立,
$\therefore$当$n \in \mathbf{N}^*$,且$n \geqslant 2$时,$a^n - nab^{n - 1} + (n - 1)b^n$能被$(a - b)^2$整除.
假设当$n = k(k \geqslant 2)$时,$a^k - kab^{k - 1} + (k - 1)b^k$能被$(a - b)^2$整除,
设上式除以$(a - b)^2$所得的商为$r$,则
$a^k - kab^{k - 1} + (k - 1)b^k = r(a - b)^2$,
$\therefore a^{k + 1} = ka^2b^{k - 1} - (k - 1)ab^k + r(a - b)^2a$,
故$a^{k + 1} - (k + 1)ab^k + kb^{k + 1}$
$= ka^2b^{k - 1} - (k - 1)ab^k + r(a - b)^2a - (k + 1)ab^k + kb^{k + 1}$
$= kb^{k - 1}(a - b)^2 + r(a - b)^2a = (ra + kb^{k - 1})(a - b)^2$,
$\therefore$当$n = k$时命题也成立,
$\therefore$当$n \in \mathbf{N}^*$,且$n \geqslant 2$时,$a^n - nab^{n - 1} + (n - 1)b^n$能被$(a - b)^2$整除.
15. 设$S_n$为数列$\{a_n\}$的前$n$项和,且对任意$n\in \mathbf{N}^*$,都有$S_n = \frac{n^2}{2} + \frac{a_n}{2}$成立。
(1)求$a_1,a_2,a_3$;
(2)猜想数列$\{a_n\}$的通项公式,并用数学归纳法证明。
(1)求$a_1,a_2,a_3$;
(2)猜想数列$\{a_n\}$的通项公式,并用数学归纳法证明。
答案:
15.解
(1)$\because$对任意$n \in \mathbf{N}^*$,都有$S_n = \frac{n^2}{2} + \frac{a_n}{2}$成立,
$\therefore a_1 = S_1 = \frac{1}{2} + \frac{a_1}{2}$,解得$a_1 = 1$,
$S_2 = \frac{2^2}{2} + \frac{a_2}{2}$,即$a_1 + a_2 = 2 + \frac{a_2}{2}$,
解得$a_2 = 2$,$S_3 = \frac{3^2}{2} + \frac{a_3}{2}$
即$a_1 + a_2 + a_3 = \frac{9}{2} + \frac{a_3}{2}$,解得$a_3 = 3$.
(2)由
(1)猜想$a_n = n$.
证明:①当$n = 1$时,$a_1 = 1$,显然成立;
②假设当$n = k(k \geqslant 1,k \in \mathbf{N}^*)$时,$a_k = k$成立,
则当$n = k + 1$时,$a_{k + 1} = S_{k + 1} - S_k = \frac{(k + 1)^2}{2} + \frac{a_{k + 1}}{2} - \frac{k^2}{2} - \frac{a_k}{2} = \frac{(k + 1)^2}{2} + \frac{a_{k + 1}}{2} - \frac{k^2}{2} - \frac{k}{2}$,
$\therefore a_{k + 1} = k + 1$,
即当$n = k + 1$时,等式也成立,
由①②可知,$a_n = n$对任意$n \in \mathbf{N}^*$都成立.
(1)$\because$对任意$n \in \mathbf{N}^*$,都有$S_n = \frac{n^2}{2} + \frac{a_n}{2}$成立,
$\therefore a_1 = S_1 = \frac{1}{2} + \frac{a_1}{2}$,解得$a_1 = 1$,
$S_2 = \frac{2^2}{2} + \frac{a_2}{2}$,即$a_1 + a_2 = 2 + \frac{a_2}{2}$,
解得$a_2 = 2$,$S_3 = \frac{3^2}{2} + \frac{a_3}{2}$
即$a_1 + a_2 + a_3 = \frac{9}{2} + \frac{a_3}{2}$,解得$a_3 = 3$.
(2)由
(1)猜想$a_n = n$.
证明:①当$n = 1$时,$a_1 = 1$,显然成立;
②假设当$n = k(k \geqslant 1,k \in \mathbf{N}^*)$时,$a_k = k$成立,
则当$n = k + 1$时,$a_{k + 1} = S_{k + 1} - S_k = \frac{(k + 1)^2}{2} + \frac{a_{k + 1}}{2} - \frac{k^2}{2} - \frac{a_k}{2} = \frac{(k + 1)^2}{2} + \frac{a_{k + 1}}{2} - \frac{k^2}{2} - \frac{k}{2}$,
$\therefore a_{k + 1} = k + 1$,
即当$n = k + 1$时,等式也成立,
由①②可知,$a_n = n$对任意$n \in \mathbf{N}^*$都成立.
查看更多完整答案,请扫码查看