2025年绿色通道45分钟课时作业与单元测评高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绿色通道45分钟课时作业与单元测评高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 数列$1\frac{1}{2},2\frac{1}{4},3\frac{1}{8},4\frac{1}{16}·s$的前$n$项和为(
A.$\frac{1}{2}(n^{2}+n + 1)-\frac{1}{2^{n}}$
B.$\frac{1}{2}n(n + 1)+1-\frac{1}{2^{n + 1}}$
C.$\frac{1}{2}(n^{2}+n + 2)-\frac{1}{2^{n}}$
D.$\frac{1}{2}n(n + 1)+2(1-\frac{1}{2^{n}})$
C
)A.$\frac{1}{2}(n^{2}+n + 1)-\frac{1}{2^{n}}$
B.$\frac{1}{2}n(n + 1)+1-\frac{1}{2^{n + 1}}$
C.$\frac{1}{2}(n^{2}+n + 2)-\frac{1}{2^{n}}$
D.$\frac{1}{2}n(n + 1)+2(1-\frac{1}{2^{n}})$
答案:
1.C $1\frac{1}{2}+2\frac{1}{4}+3\frac{1}{8}+·s+\left(n+\frac{1}{2^{n}}\right)$
$=(1 + 2+·s+n)+\left(\frac{1}{2}+\frac{1}{4}+·s+\frac{1}{2^{n}}\right)$
$=\frac{n(n + 1)}{2}+\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\frac{1}{2}}$
$=\frac{1}{2}(n^{2}+n)+1-\frac{1}{2^{n}}$
$=\frac{1}{2}(n^{2}+n + 2)-\frac{1}{2^{n}}$.
$=(1 + 2+·s+n)+\left(\frac{1}{2}+\frac{1}{4}+·s+\frac{1}{2^{n}}\right)$
$=\frac{n(n + 1)}{2}+\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\frac{1}{2}}$
$=\frac{1}{2}(n^{2}+n)+1-\frac{1}{2^{n}}$
$=\frac{1}{2}(n^{2}+n + 2)-\frac{1}{2^{n}}$.
2. $\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+·s+\frac{1}{2023×2025}=$(
A.$\frac{2022}{2025}$
B.$\frac{2024}{2025}$
C.$\frac{1011}{2025}$
D.$\frac{1012}{2025}$
D
)A.$\frac{2022}{2025}$
B.$\frac{2024}{2025}$
C.$\frac{1011}{2025}$
D.$\frac{1012}{2025}$
答案:
2.D $\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+·s+\frac{1}{2023×2025}$
$=\frac{1}{2}×\left(1-\frac{1}{3}\right)+\frac{1}{2}×\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}×\left(\frac{1}{5}-\frac{1}{7}\right)$
$+·s+\frac{1}{2}×\left(\frac{1}{2023}-\frac{1}{2025}\right)=\frac{1}{2}×\left(1-\frac{1}{2025}\right)=\frac{1012}{2025}$.
$=\frac{1}{2}×\left(1-\frac{1}{3}\right)+\frac{1}{2}×\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}×\left(\frac{1}{5}-\frac{1}{7}\right)$
$+·s+\frac{1}{2}×\left(\frac{1}{2023}-\frac{1}{2025}\right)=\frac{1}{2}×\left(1-\frac{1}{2025}\right)=\frac{1012}{2025}$.
3. 设函数$f(x)=\begin{cases}\frac{x + 2}{x - 1},x\neq1,\\1,x = 1,\end{cases}$则$f(\frac{1}{101})+f(\frac{2}{101})+f(\frac{3}{101})+·s+f(\frac{201}{101})$的值为( )
A.$199$
B.$200$
C.$201$
D.$202$
A.$199$
B.$200$
C.$201$
D.$202$
答案:
3.C 当$x\neq1$时,$f(x)+f(2 - x)=\frac{x + 2}{x - 1}+\frac{2 - x + 2}{2 - x - 1}=\frac{x + 2}{x - 1}+\frac{4 - x}{1 - x}=\frac{x + 2}{x - 1}-\frac{x - 4}{x - 1}=2$.
令$S=f\left(\frac{1}{101}\right)+f\left(\frac{2}{101}\right)+·s+f(1)+·s+f\left(\frac{200}{101}\right)+f\left(\frac{201}{101}\right)$,则$2S = 2×200+2×1$,则$S = 201$.
令$S=f\left(\frac{1}{101}\right)+f\left(\frac{2}{101}\right)+·s+f(1)+·s+f\left(\frac{200}{101}\right)+f\left(\frac{201}{101}\right)$,则$2S = 2×200+2×1$,则$S = 201$.
4. (2024·安徽亳州期中)若数列$\{a_{n}\}$满足$a_{n}=a_{n - 1}+\frac{1}{n^{2}+n}(n\geq2$且$n\in\mathbf{N}_{+})$,$a_{1}=\frac{1}{2}$,则$a_{2024}=$(
A.$\frac{2022}{2023}$
B.$\frac{2023}{2024}$
C.$\frac{2024}{2025}$
D.$\frac{2025}{2026}$
C
)A.$\frac{2022}{2023}$
B.$\frac{2023}{2024}$
C.$\frac{2024}{2025}$
D.$\frac{2025}{2026}$
答案:
4.C 由$a_{n}=a_{n - 1}+\frac{1}{n^{2}+n}$,可得$a_{n}-a_{n - 1}=\frac{1}{n^{2}+n}=\frac{1}{n}-\frac{1}{n + 1}$,
则有$a_{n}=(a_{n}-a_{n - 1})+(a_{n - 1}-a_{n - 2})+·s+(a_{2}-a_{1})+a_{1}=\frac{1}{n}-\frac{1}{n + 1}+\frac{1}{n - 1}-\frac{1}{n}+·s+\frac{1}{2}-\frac{1}{3}+1-\frac{1}{2}+1$
$=1-\frac{1}{n + 1}(n\geq2)$.故$a_{2024}=\frac{2024 - 1}{2024 + 1}?$(原文此处疑似有误,按规律应为$a_{n}=\frac{n}{n + 1}(n\geq2)$,则$a_{2024}=\frac{2024}{2025}$ ,假设按此计算)$=\frac{2024}{2025}$.
则有$a_{n}=(a_{n}-a_{n - 1})+(a_{n - 1}-a_{n - 2})+·s+(a_{2}-a_{1})+a_{1}=\frac{1}{n}-\frac{1}{n + 1}+\frac{1}{n - 1}-\frac{1}{n}+·s+\frac{1}{2}-\frac{1}{3}+1-\frac{1}{2}+1$
$=1-\frac{1}{n + 1}(n\geq2)$.故$a_{2024}=\frac{2024 - 1}{2024 + 1}?$(原文此处疑似有误,按规律应为$a_{n}=\frac{n}{n + 1}(n\geq2)$,则$a_{2024}=\frac{2024}{2025}$ ,假设按此计算)$=\frac{2024}{2025}$.
5. (多选)已知$S_{n}$是数列$\{a_{n}\}$的前$n$项和,且$a_{3}=4$,$a_{n}+a_{n + 1}=3n + 1$,则下列结论正确的是(
A.$a_{1}=1$
B.$a_{10}=30$
C.$S_{99}=7230$
D.$S_{100}=7550$
AD
)A.$a_{1}=1$
B.$a_{10}=30$
C.$S_{99}=7230$
D.$S_{100}=7550$
答案:
5.AD 由$a_{n}+a_{n + 1}=3n + 1$,得$a_{n + 1}+a_{n + 2}=3n + 4$,两式
相减得$a_{n + 2}-a_{n}=3$,故数列$\{a_{n}\}$的奇数项是等差数列,
偶数项也是等差数列,公差都为$3$.易知$a_{2}=3,a_{1}=1$,A
正确;
$a_{10}=a_{2}+4×3 = 15$,B错误;
$a_{98}=a_{2}+48×3 = 147,a_{99}=a_{1}+49×3 = 148$,
$S_{99}=\frac{50(a_{1}+a_{99})}{2}+\frac{49(a_{2}+a_{98})}{2}=7400$,C错误;
$a_{100}=a_{2}+49×3 = 150,S_{100}=S_{99}+150 = 7550$,D正确.
相减得$a_{n + 2}-a_{n}=3$,故数列$\{a_{n}\}$的奇数项是等差数列,
偶数项也是等差数列,公差都为$3$.易知$a_{2}=3,a_{1}=1$,A
正确;
$a_{10}=a_{2}+4×3 = 15$,B错误;
$a_{98}=a_{2}+48×3 = 147,a_{99}=a_{1}+49×3 = 148$,
$S_{99}=\frac{50(a_{1}+a_{99})}{2}+\frac{49(a_{2}+a_{98})}{2}=7400$,C错误;
$a_{100}=a_{2}+49×3 = 150,S_{100}=S_{99}+150 = 7550$,D正确.
6. (多选)“太极生两仪,两仪生四象,四象生八卦,……”,大衍数列,来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,是中华传统文化中隐藏着的世界数学史上的一道数列题.大衍数列中的每一项都代表太极衍生过程中,曾经历过的两仪数量总和,从第一项起依次为$0,2,4,8,12,18,24,32,40,50,·s$,若大衍数列为$\{a_{n}\}$,则下列结论正确的是(

A.$a_{11}=62$
B.$\frac{1}{a_{3}}+\frac{1}{a_{5}}+\frac{1}{a_{7}}+·s+\frac{1}{a_{2021}}+\frac{1}{a_{2023}}=\frac{1011}{2024}$
C.$a_{2}+a_{4}+a_{6}+·s+a_{12}=182$
D.当$n$为偶数时,$a_{n}=\frac{n^{2}}{2}$
BCD
)A.$a_{11}=62$
B.$\frac{1}{a_{3}}+\frac{1}{a_{5}}+\frac{1}{a_{7}}+·s+\frac{1}{a_{2021}}+\frac{1}{a_{2023}}=\frac{1011}{2024}$
C.$a_{2}+a_{4}+a_{6}+·s+a_{12}=182$
D.当$n$为偶数时,$a_{n}=\frac{n^{2}}{2}$
答案:
6.BCD 由题可得,当$n$为偶数时,$a_{n}=\frac{n^{2}}{2}$,当$n$为奇数时,
$a_{n}=\frac{n^{2}-1}{2}$,所以$a_{11}=\frac{121 - 1}{2}=60$,A错误,D正确;当$n$
为奇数且$n\geq3$时,$\frac{1}{a_{n}}=\frac{2}{(n - 1)(n + 1)}=\frac{1}{n - 1}-\frac{1}{n + 1}$,所
以$\frac{1}{a_{3}}+\frac{1}{a_{5}}+\frac{1}{a_{7}}+·s+\frac{1}{a_{2021}}+\frac{1}{a_{2023}}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+·s+\frac{1}{2020}-\frac{1}{2022}+\frac{1}{2022}-\frac{1}{2024}=\frac{1011}{2024}$,B
正确;$a_{2}+a_{4}+a_{6}+·s+a_{12}=\frac{4}{2}+\frac{16}{2}+\frac{36}{2}+·s+\frac{144}{2}=$
$182$,C正确.故选BCD.
$a_{n}=\frac{n^{2}-1}{2}$,所以$a_{11}=\frac{121 - 1}{2}=60$,A错误,D正确;当$n$
为奇数且$n\geq3$时,$\frac{1}{a_{n}}=\frac{2}{(n - 1)(n + 1)}=\frac{1}{n - 1}-\frac{1}{n + 1}$,所
以$\frac{1}{a_{3}}+\frac{1}{a_{5}}+\frac{1}{a_{7}}+·s+\frac{1}{a_{2021}}+\frac{1}{a_{2023}}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+·s+\frac{1}{2020}-\frac{1}{2022}+\frac{1}{2022}-\frac{1}{2024}=\frac{1011}{2024}$,B
正确;$a_{2}+a_{4}+a_{6}+·s+a_{12}=\frac{4}{2}+\frac{16}{2}+\frac{36}{2}+·s+\frac{144}{2}=$
$182$,C正确.故选BCD.
7. 数列$\{a_{n}\}$的通项公式为$a_{n}=\frac{1}{\sqrt{n + 2}+\sqrt{n + 3}}$,则该数列的前$n$项和$S_{n}=$
$\sqrt{n + 3}-\sqrt{3}$
$\boldsymbol{$$}$.
答案:
7.$\sqrt{n + 3}-\sqrt{3}$
解析$a_{n}=\frac{1}{\sqrt{n + 2}+\sqrt{n + 3}}$
$=\frac{\sqrt{n + 3}-\sqrt{n + 2}}{(\sqrt{n + 2}+\sqrt{n + 3})(\sqrt{n + 3}-\sqrt{n + 2})}$
$=\frac{\sqrt{n + 3}-\sqrt{n + 2}}{(n + 3)-(n + 2)}=\sqrt{n + 3}-\sqrt{n + 2}$,
故$S_{n}=a_{1}+a_{2}+a_{3}+·s+a_{n - 1}+a_{n}=(\sqrt{4}-\sqrt{3})+(\sqrt{5}-$
$\sqrt{4})+(\sqrt{6}-\sqrt{5})+·s+(\sqrt{n + 2}-\sqrt{n + 1})+(\sqrt{n + 3}-$
$\sqrt{n + 2})=\sqrt{n + 3}-\sqrt{3}$.
解析$a_{n}=\frac{1}{\sqrt{n + 2}+\sqrt{n + 3}}$
$=\frac{\sqrt{n + 3}-\sqrt{n + 2}}{(\sqrt{n + 2}+\sqrt{n + 3})(\sqrt{n + 3}-\sqrt{n + 2})}$
$=\frac{\sqrt{n + 3}-\sqrt{n + 2}}{(n + 3)-(n + 2)}=\sqrt{n + 3}-\sqrt{n + 2}$,
故$S_{n}=a_{1}+a_{2}+a_{3}+·s+a_{n - 1}+a_{n}=(\sqrt{4}-\sqrt{3})+(\sqrt{5}-$
$\sqrt{4})+(\sqrt{6}-\sqrt{5})+·s+(\sqrt{n + 2}-\sqrt{n + 1})+(\sqrt{n + 3}-$
$\sqrt{n + 2})=\sqrt{n + 3}-\sqrt{3}$.
8. “数学王子”高斯是近代数学奠基者之一,他的数学研究几乎遍及所有领域,并且高斯研究出了很多数学理论,比如高斯函数、倒序相加法、最小二乘法、每一个$n$阶代数方程必有$n$个复数解等.若函数$f(x)=\log_{2}\frac{2x}{1 - x}$,设$a_{1}=1$,$a_{n}=f(\frac{1}{n})+f(\frac{2}{n})+f(\frac{3}{n})+·s+f(\frac{n - 1}{n})$($n\in\mathbf{N},n\geq2$),则$a_{1}+a_{2}+·s+a_{10}=$
46
$\boldsymbol{$$}$.
答案:
8.46
解析 由题意知,函数$f(x)=\log_{2}\frac{2x}{1 - x}$的定义域为$(0,1)$,
设$M(x_{1},y_{1}),N(x_{2},y_{2})$是函数$y = f(x)$图象上的两
点,其中$x_{1},x_{2}\in(0,1)$,且$x_{1}+x_{2}=1$,则有$y_{1}+y_{2}=$
$f(x_{1})+f(x_{2})=\log_{2}\frac{2x_{1}}{1 - x_{1}}+\log_{2}\frac{2x_{2}}{1 - x_{2}}=$
$\log_{2}\frac{4x_{1}x_{2}}{1-(x_{1}+x_{2})+x_{1}x_{2}}=2$,
从而当$x\in(0,1)$时,$f(x)+f(1 - x)=2$,当$n\geq2$时,
$a_{n}=f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)+·s+f\left(\frac{n - 1}{n}\right)$,
则$2a_{n}=\left[f\left(\frac{1}{n}\right)+f\left(\frac{n - 1}{n}\right)\right]+\left[f\left(\frac{2}{n}\right)+$
$f\left(\frac{n - 2}{n}\right)\right]+·s+\left[f\left(\frac{n - 1}{n}\right)+f\left(\frac{1}{n}\right)\right]=2n - 2$,
所以$a_{n}=n - 1$,又$a_{1}=1$,
所以对一切正整数$n$,有$a_{n}=\begin{cases}1,n = 1,\\n - 1,n\geq2,\end{cases}$
故$a_{1}+a_{2}+·s+a_{10}=1+(1 + 2+3+·s+9)=46$.
解析 由题意知,函数$f(x)=\log_{2}\frac{2x}{1 - x}$的定义域为$(0,1)$,
设$M(x_{1},y_{1}),N(x_{2},y_{2})$是函数$y = f(x)$图象上的两
点,其中$x_{1},x_{2}\in(0,1)$,且$x_{1}+x_{2}=1$,则有$y_{1}+y_{2}=$
$f(x_{1})+f(x_{2})=\log_{2}\frac{2x_{1}}{1 - x_{1}}+\log_{2}\frac{2x_{2}}{1 - x_{2}}=$
$\log_{2}\frac{4x_{1}x_{2}}{1-(x_{1}+x_{2})+x_{1}x_{2}}=2$,
从而当$x\in(0,1)$时,$f(x)+f(1 - x)=2$,当$n\geq2$时,
$a_{n}=f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)+·s+f\left(\frac{n - 1}{n}\right)$,
则$2a_{n}=\left[f\left(\frac{1}{n}\right)+f\left(\frac{n - 1}{n}\right)\right]+\left[f\left(\frac{2}{n}\right)+$
$f\left(\frac{n - 2}{n}\right)\right]+·s+\left[f\left(\frac{n - 1}{n}\right)+f\left(\frac{1}{n}\right)\right]=2n - 2$,
所以$a_{n}=n - 1$,又$a_{1}=1$,
所以对一切正整数$n$,有$a_{n}=\begin{cases}1,n = 1,\\n - 1,n\geq2,\end{cases}$
故$a_{1}+a_{2}+·s+a_{10}=1+(1 + 2+3+·s+9)=46$.
查看更多完整答案,请扫码查看